Docking of COVID-19 main protease and TD-DFT/DMOl3 simulated method, synthesis, and characterization with hybrid nanocomposite thin films and its applications
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Docking of COVID-19 main protease and TD-DFT/DMOl3 simulated method, synthesis, and characterization with hybrid nanocomposite thin films and its applications
|
|
Автор |
Ghazy, A. R.
Hemeda, O. M. Al-Hossainy, A. F. Ghazy, R. Henaish, A. M. A. |
|
Тематика |
DOCKING STUDIED
HYBRID NANOCOMPOSITE THIN FILMS LASER PHOTOLUMINESCENCE OPTICAL PROPERTIES SYNTHESIS TD-DFT |
|
Описание |
Using the precipitation polymerization method copolymer poly methyl methacrylate co acrylonitrile was synthesized. Hybrid nanocomposite thin films [P(MMA-co-AN)/ZnO]HNC were prepared using the dip casting method by adding ZnO nanoparticles by the ratios 0.25, 0.20, 0.15, and 0.10 according to the weight of P(MMA-co-AN). Fourier Transform Infrared Spectroscopy (FTIR), UV–Vis optical properties, and laser photoluminescence PL characterization techniques were used to study [P(MMA-co-AN)/ZnO]HNC films. In addition, density functional theory (DFT), optimization via TD-DFTD/Mol3, and Cambridge Serial Total Energy Bundle (TD-FDT/CASTEP) were used to perform the geometrical study. FTIR spectra from [P(MMA-co-AN)/ZnO]HNC indicates the interaction between the copolymer and ZnO nanoparticles. In the wavelength range of 190 – 800 nm, the optical properties of [P(MMA-co-AN)/ZnO]HNC were considered. The direct energy band gap was found to be changed from 4.1 eV for P (MMA – co – AN) to 3.19 eV for 0.25 ZnO, while the concentration of 0.20 ZnO was the highest in the Urbach energy with 0.17 eV. The refractive index nλ=700 ranges from 1.48 to 1.81 for the concentration of 0.15 ZnO. Three emission peaks at 393 nm, 527 nm, and 775 nm were figured in the laser photoluminescence spectra of [P(MMA-co-AN)/ZnO]HNC films. In order to attain the restrained action of studied ligands (hybrid nanocomposite) novel coronavirus (COVID 19) main protest (6LU7) molecular docking studies were performed. The predicted energy gab by TD-DFT/DMOl3 was found to be agreed with the experimental data in a good manner. © 2023 Elsevier B.V.
|
|
Дата |
2024-04-05T16:16:21Z
2024-04-05T16:16:21Z 2023 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) |info:eu-repo/semantics/publishedVersion |
|
Идентификатор |
Ghazy, AR, Hemeda, OM, Al-Hossainy, AF, Ghazy, R & Henaish, AMA 2023, 'Docking of COVID-19 main protease and TD-DFT/DMOl3 simulated method, synthesis, and characterization with hybrid nanocomposite thin films and its applications', Surfaces and Interfaces, Том. 37, 102722. https://doi.org/10.1016/j.surfin.2023.102722
Ghazy, A. R., Hemeda, O. M., Al-Hossainy, A. F., Ghazy, R., & Henaish, A. M. A. (2023). Docking of COVID-19 main protease and TD-DFT/DMOl3 simulated method, synthesis, and characterization with hybrid nanocomposite thin films and its applications. Surfaces and Interfaces, 37, [102722]. https://doi.org/10.1016/j.surfin.2023.102722 2468-0230 Final All Open Access, Bronze https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148953328&doi=10.1016%2fj.surfin.2023.102722&partnerID=40&md5=df0f46cd301066a5014a6f8d582ce869 https://doi.org/10.1016/j.surfin.2023.102722 http://elar.urfu.ru/handle/10995/130231 10.1016/j.surfin.2023.102722 85148953328 000935168200001 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
|
|
Формат |
application/pdf
|
|
Издатель |
Elsevier B.V.
|
|
Источник |
Surfaces and Interfaces
Surfaces and Interfaces |
|