Просмотреть запись

Self-consistent solution of magnetic and friction energy losses of a magnetic nanoparticle

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Self-consistent solution of magnetic and friction energy losses of a magnetic nanoparticle
 
Автор Helbig, S.
Abert, C.
Sánchez, P. A.
Kantorovich, S. S.
Suess, D.
 
Тематика ENERGY DISSIPATION
FRICTION
NANOMAGNETICS
PARTICLE SIZE ANALYSIS
A-PARTICLES
ALTERNATING MAGNETIC FIELD
FRICTION ENERGY
FRICTIONAL LOSS
MAGNETIC ENERGIES
SELF-CONSISTENT SOLUTION
SIMPLE++
SIMULATION MODEL
STEADY STATE
VISCOUS FLUIDS
PARTICLE SIZE
 
Описание We present a simple simulation model for analyzing magnetic and frictional losses of magnetic nanoparticles in viscous fluids subject to alternating magnetic fields. Assuming a particle size below the single-domain limit, we use a macrospin approach and solve the Landau-Lifshitz-Gilbert equation coupled to the mechanical torque equation. Despite its simplicity the presented model exhibits surprisingly rich physics and enables a detailed analysis of the different loss processes depending on field parameters and initial arrangement of the particle and the field. Depending on those parameters regions of different steady states emerge: a region with dominating magnetic relaxation and high magnetic losses and another region region with high frictional losses at low fields or low frequencies. The energy increases continuously even across regime boundaries up to frequencies above the viscous relaxation limit. At those higher frequencies the steady state can also depend on the initial orientation of the particle in the external field. The general behavior and special cases and their specific absorption rates are compared and discussed. © 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Austrian Science Fund, FWF: 33748; Russian Science Foundation, RSF; European Regional Development Fund, ERDF; Universitat de les Illes Balears, UIB
The authors wish to thank the “FWF - Der Wissenschaftsfonds” for funding under the Project No. P 33748 and the Vienna Scientific Cluster (VSC) for providing the necessary computational resources. We acknowledge financial support by the Vienna Doctoral School in Physics (VDSP). P.A.S. acknowledges support from the project “Computer modeling of magnetic nanosorbents”, funded by the University of the Balearic Islands and the European Regional Development Fund. This research has been partially performed in the framework of the RSF Project No.19-12-00209.
 
Дата 2024-04-05T16:17:22Z
2024-04-05T16:17:22Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Helbig, S, Abert, C, Sánchez, PA, Kantorovich, SS & Suess, D 2023, 'Self-consistent solution of magnetic and friction energy losses of a magnetic nanoparticle', Physical Review B, Том. 107, № 5, 054416. https://doi.org/10.1103/PhysRevB.107.054416
Helbig, S., Abert, C., Sánchez, P. A., Kantorovich, S. S., & Suess, D. (2023). Self-consistent solution of magnetic and friction energy losses of a magnetic nanoparticle. Physical Review B, 107(5), [054416]. https://doi.org/10.1103/PhysRevB.107.054416
2469-9950
Final
All Open Access, Hybrid Gold, Green
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149791779&doi=10.1103%2fPhysRevB.107.054416&partnerID=40&md5=74ce98d5b7c1c2fcff2b34c227d96d77
http://link.aps.org/pdf/10.1103/PhysRevB.107.054416
http://elar.urfu.ru/handle/10995/130268
10.1103/PhysRevB.107.054416
85149791779
000943089300004
 
Язык en
 
Связанные ресурсы info:eu-repo/grantAgreement/RSF//19-12-00209
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель American Physical Society
 
Источник Physical Review B
Physical Review B