Просмотреть запись

Theoretical and numerical aspects for the longtime behavior of nonlinear delay time Caputo fractional reaction–diffusion equations

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Theoretical and numerical aspects for the longtime behavior of nonlinear delay time Caputo fractional reaction–diffusion equations
 
Автор Hendy, A. S.
Zaky, M. A.
Van, Bockstal, K.
 
Тематика CONTRACTIVITY
ENERGY ESTIMATES
SPECTRAL METHOD
STABILITY
TIME DELAY
TIME FRACTIONAL REACTION–DIFFUSION EQUATIONS
DIFFUSION
NONLINEAR EQUATIONS
NUMERICAL METHODS
PARTIAL DIFFERENTIAL EQUATIONS
TIME DELAY
TIMING CIRCUITS
ASYMPTOTICS
CONTRACTIVITY
ENERGY ESTIMATES
FRACTIONAL REACTIONS
LONG TIME BEHAVIOR
REACTION DIFFUSION EQUATIONS
SPECTRAL METHODS
THEORETICAL ASPECTS
TIME FRACTIONAL REACTION–DIFFUSION EQUATION
TIME-DELAYS
ASYMPTOTIC STABILITY
 
Описание In this paper, we investigate the longtime behavior of time fractional reaction–diffusion equations with delay. The governing partial differential equation generalizes the Hutchinson, the Mackey–Glass and the Nicholson’s blowflies equations. Energy estimates, asymptotic stability and asymptotic contractivity of the problem are proved. The finite difference technique is used to discretize the time-fractional Caputo derivative, and the spectral Galerkin approach is used for the spatial approximation. Additionally, the ability to preserve asymptotic contractivity and stability rates can be proved for the numerical solution similarly as for the true solution. Finally, some numerical experiments are performed to confirm our findings. © 2022, The Author(s), under exclusive licence to Springer Nature B.V.
National Research Centre, NRC; Russian Science Foundation, RSF: 22-21-00075; Bijzonder Onderzoeksfonds UGent, BOF: 01M01021
This study was supported financially by the RSF grant, project 22-21-00075, the National Research Centre of Egypt (NRC), and the Methusalem programme of the Ghent University Special Research Fund (BOF) (Grant number 01M01021).
The authors are grateful to the handling editor and the anonymous referees for their constructive feedback and helpful suggestions, which highly improved the paper. A. S. Hendy wishes to acknowledge the support of the RSF grant, project 22-21-00075. M. A. Zaky wishes to acknowledge the financial support of the National Research Centre of Egypt (NRC). K. Van Bockstal is supported by the Methusalem programme of the Ghent University Special Research Fund (BOF) (Grant number 01M01021).
 
Дата 2024-04-05T16:17:27Z
2024-04-05T16:17:27Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Hendy, AS, Zaky, MA & Van Bockstal, K 2023, 'Theoretical and numerical aspects for the longtime behavior of nonlinear delay time Caputo fractional reaction–diffusion equations', Nonlinear Dynamics, Том. 111, № 4, стр. 3525-3537. https://doi.org/10.1007/s11071-022-07982-7
Hendy, A. S., Zaky, M. A., & Van Bockstal, K. (2023). Theoretical and numerical aspects for the longtime behavior of nonlinear delay time Caputo fractional reaction–diffusion equations. Nonlinear Dynamics, 111(4), 3525-3537. https://doi.org/10.1007/s11071-022-07982-7
0924-090X
Final
All Open Access, Green
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141392945&doi=10.1007%2fs11071-022-07982-7&partnerID=40&md5=d4ce61d4968a08bf49a1c648cad9f6c1
https://biblio.ugent.be/publication/01GP0M62T2DJWYJRFK32RNZ4HY/file/01GP0MK8S7RF3MAMYMW5GCB838.pdf
http://elar.urfu.ru/handle/10995/130270
10.1007/s11071-022-07982-7
85141392945
000878949400007
 
Язык en
 
Связанные ресурсы info:eu-repo/grantAgreement/RSF//22-21-00075
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель Springer Science and Business Media B.V.
 
Источник Nonlinear Dynamics
Nonlinear Dynamics