Просмотреть запись

Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithms

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithms
 
Автор Nizovtseva, I.
Palmin, V.
Simkin, I.
Starodumov, I.
Mikushin, P.
Nozik, A.
Hamitov, T.
Ivanov, S.
Vikharev, S.
Zinovev, A.
Svitich, V.
Mogilev, M.
Nikishina, M.
Kraev, S.
Yurchenko, S.
Mityashin, T.
Chernushkin, D.
Kalyuzhnaya, A.
Blyakhman, F.
 
Тематика ALGORITHMS
APPROXIMATION
BIOREACTOR
BUBBLE DETECTION
CANNY EDGE DETECTOR
CLUSTERING ALGORITHMS
COMPUTER VISION
DATA MARKUP
EDGE DETECTION
FRANGI FILTER ACCURACY
GAS—LIQUID FLOWS
IMAGE PROCESSING
IMAGE QUALITY IMPROVEMENT
JET STREAM
KLA
MASS TRANSFER COEFFICIENT
NEURAL NETWORKS
PHASE CONTACT AREA
STARDIST MODEL
VESSEL SEGMENTATION
APPROXIMATION ALGORITHMS
BIOCONVERSION
BIOREACTORS
COMPUTER VISION
DEEP NEURAL NETWORKS
EDGE DETECTION
ENERGY EFFICIENCY
IMAGE ENHANCEMENT
IMAGE SEGMENTATION
MASS TRANSFER
APPROXIMATION
BUBBLE DETECTION
CANNY EDGE DETECTORS
CONTACT AREAS
DATA MARKUP
FRANGI FILTER ACCURACY
GAS LIQUID FLOWS
IMAGE QUALITY IMPROVEMENTS
IMAGES PROCESSING
JET STREAMS
KLUM
MASS-TRANSFER COEFFICIENT
NEURAL-NETWORKS
PHASE CONTACT
PHASE CONTACT AREA
STARDIST MODEL
VESSEL SEGMENTATION
CLUSTERING ALGORITHMS
 
Описание Development of energy-efficient and high-performance bioreactors requires progress in methods for assessing the key parameters of the biosynthesis process. With a wide variety of approaches and methods for determining the phase contact area in gas–liquid flows, the question of obtaining its accurate quantitative estimation remains open. Particularly challenging are the issues of getting information about the mass transfer coefficients instantly, as well as the development of predictive capabilities for the implementation of effective flow control in continuous fermentation both on the laboratory and industrial scales. Motivated by the opportunity to explore the possibility of applying classical and non-classical computer vision methods to the results of high-precision video records of bubble flows obtained during the experiment in the bioreactor vessel, we obtained a number of results presented in the paper. Characteristics of the bioreactor’s bubble flow were estimated first by classical computer vision (CCV) methods including an elliptic regression approach for single bubble boundaries selection and clustering, image transformation through a set of filters and developing an algorithm for separation of the overlapping bubbles. The application of the developed method for the entire video filming makes it possible to obtain parameter distributions and set dropout thresholds in order to obtain better estimates due to averaging. The developed CCV methodology was also tested and verified on a collected and labeled manual dataset. An onwards deep neural network (NN) approach was also applied, for instance the segmentation task, and has demonstrated certain advantages in terms of high segmentation resolution, while the classical one tends to be more speedy. Thus, in the current manuscript both advantages and disadvantages of the classical computer vision method (CCV) and neural network approach (NN) are discussed based on evaluation of bubbles’ number and their area defined. An approach to mass transfer coefficient estimation methodology in virtue of obtained results is also represented. © 2023 by the authors.
Ministry of Education and Science of the Russian Federation, Minobrnauka
The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.
 
Дата 2024-04-05T16:18:10Z
2024-04-05T16:18:10Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Nizovtseva, I, Palmin, V, Simkin, I, Starodumov, I, Mikushin, P, Nozik, A, Hamitov, T, Ivanov, S, Vikharev, S, Zinovev, A, Svitich, V, Mogilev, M, Nikishina, M, Kraev, S, Yurchenko, S, Mityashin, T, Chernushkin, D, Kalyuzhnaya, A & Blyakhman, F 2023, 'Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithms', Algorithms, Том. 16, № 3, 125. https://doi.org/10.3390/a16030125
Nizovtseva, I., Palmin, V., Simkin, I., Starodumov, I., Mikushin, P., Nozik, A., Hamitov, T., Ivanov, S., Vikharev, S., Zinovev, A., Svitich, V., Mogilev, M., Nikishina, M., Kraev, S., Yurchenko, S., Mityashin, T., Chernushkin, D., Kalyuzhnaya, A., & Blyakhman, F. (2023). Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithms. Algorithms, 16(3), [125]. https://doi.org/10.3390/a16030125
1999-4893
Final
All Open Access, Gold, Green
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151097376&doi=10.3390%2fa16030125&partnerID=40&md5=584a5ef1e324da31328b490bec768dad
https://www.mdpi.com/1999-4893/16/3/125/pdf?version=1679639197
http://elar.urfu.ru/handle/10995/130302
10.3390/a16030125
85151097376
000952975000001
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель MDPI
 
Источник Algorithms
Algorithms