Просмотреть запись

Unveiling the Catalytic Potential of Topological Nodal-Line Semimetal AuSn4 for Hydrogen Evolution and CO2 Reduction

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Unveiling the Catalytic Potential of Topological Nodal-Line Semimetal AuSn4 for Hydrogen Evolution and CO2 Reduction
 
Автор Boukhvalov, D. W.
D’Olimpio, G.
Mazzola, F.
Kuo, C. -N.
Mardanya, S.
Fujii, J.
Politano, G. G.
Lue, C. S.
Agarwal, A.
Vobornik, I.
Torelli, P.
Politano, A.
 
Тематика ATOMS
CARBON DIOXIDE
CARRIER MOBILITY
CATALYST ACTIVITY
CHEMICAL STABILITY
ELECTRONIC STATES
OXIDATION
POLLUTION CONTROL
QUANTUM THEORY
TIN OXIDES
TOPOLOGY
CATALYTIC POTENTIAL
CHARGE-CARRIER MOBILITY
CO 2 REDUCTION
ELECTRON CHARGE
ELECTRON CONDUCTIVITY
HYDROGEN ATOMS
HYDROGEN EVOLUTION REACTIONS
HYDROGEN-EVOLUTION
NODAL LINE
]+ CATALYST
BINARY ALLOYS
 
Описание In recent years, the correlation between the existence of topological electronic states in materials and their catalytic activity has gained increasing attention, due to the exceptional electron conductivity and charge carrier mobility exhibited by quantum materials. However, the physicochemical mechanisms ruling catalysis with quantum materials are not fully understood. Here, we investigate the chemical reactivity, ambient stability, and catalytic activity of the topological nodal-line semimetal AuSn4. Our findings reveal that the surface of AuSn4 is prone to oxidation, resulting in the formation of a nanometric SnO2 skin. This surface oxidation significantly enhances the material’s performance as a catalyst for the hydrogen evolution reaction in acidic environments. We demonstrate that the peculiar atomic structure of oxidized AuSn4 enables the migration of hydrogen atoms through the Sn-O layer with a minimal energy barrier of only 0.19 eV. Furthermore, the Volmer step becomes exothermic in the presence of Sn vacancies or tin-oxide skin, as opposed to being hindered in the pristine sample, with energy values of −0.62 and −1.66 eV, respectively, compared to the +0.46 eV energy barrier in the pristine sample. Our model also suggests that oxidized AuSn4 can serve as a catalyst for the hydrogen evolution reaction in alkali media. Additionally, we evaluate the material’s suitability for the carbon dioxide reduction reaction, finding that the presence of topologically protected electronic states enhances the migration of hydrogen atoms adsorbed on the catalyst to carbon dioxide. © 2023 The Authors. Published by American Chemical Society.
 
Дата 2024-04-05T16:18:34Z
2024-04-05T16:18:34Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Boukhvalov, DW, D’Olimpio, G, Mazzola, F, Kuo, C-N, Mardanya, S, Fujii, J, Politano, GG, Lue, CS, Agarwal, A, Vobornik, I, Torelli, P & Politano, A 2023, 'Unveiling the Catalytic Potential of Topological Nodal-Line Semimetal AuSn4 for Hydrogen Evolution and CO2 Reduction', The journal of physical chemistry letters, Том. 14, № 12, стр. 3069-3076. https://doi.org/10.1021/acs.jpclett.3c00113
Boukhvalov, D. W., D’Olimpio, G., Mazzola, F., Kuo, C-N., Mardanya, S., Fujii, J., Politano, G. G., Lue, C. S., Agarwal, A., Vobornik, I., Torelli, P., & Politano, A. (2023). Unveiling the Catalytic Potential of Topological Nodal-Line Semimetal AuSn4 for Hydrogen Evolution and CO2 Reduction. The journal of physical chemistry letters, 14(12), 3069-3076. https://doi.org/10.1021/acs.jpclett.3c00113
1948-7185
Final
All Open Access, Hybrid Gold, Green
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151313221&doi=10.1021%2facs.jpclett.3c00113&partnerID=40&md5=8cc476abf72444140a8f69c066bf4572
https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c00113
http://elar.urfu.ru/handle/10995/130324
10.1021/acs.jpclett.3c00113
85151313221
000956223700001
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель American Chemical Society
 
Источник The Journal of Physical Chemistry Letters
Journal of Physical Chemistry Letters