Просмотреть запись

Embedding theorems for function spaces

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Embedding theorems for function spaces
 
Автор Al'perin, M.
Nokhrin, S.
Osipov, A. V.
 
Тематика EMBEDDING
FUNCTION SPACE
SET-OPEN TOPOLOGY
TOPOLOGICAL GROUP
TOPOLOGICAL RING
TOPOLOGICAL VECTOR SPACE
TOPOLOGY OF UNIFORM CONVERGENCE
UNIFORM SPACE
 
Описание In this paper, we have proved results similar to Tychonoff's Theorem on embedding a space of functions with the topology of pointwise convergence into the Tychonoff product of topological spaces, but applied to the function space C(X,Y) of all continuous functions from a topological space X into a uniform space Y with the topology of uniform convergence on a family of subsets of X and with the (weak) set-open topology. We also investigated the following question: how the topological embedding of the space C(X,Y) is related to algebraic structures (such as topological groups, topological rings and topological vector spaces) on C(X,Y). © 2023 Elsevier B.V.
The authors would like to thank the referee for careful reading and valuable comments.
 
Дата 2024-04-05T16:19:11Z
2024-04-05T16:19:11Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/submittedVersion
 
Идентификатор Al'perin, M, Nokhrin, S & Osipov, AV 2023, 'Embedding theorems for function spaces', Topology and its Applications, Том. 332, 108523. https://doi.org/10.1016/j.topol.2023.108523
Al'perin, M., Nokhrin, S., & Osipov, A. V. (2023). Embedding theorems for function spaces. Topology and its Applications, 332, [108523]. https://doi.org/10.1016/j.topol.2023.108523
0166-8641
Final
All Open Access, Green
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152299192&doi=10.1016%2fj.topol.2023.108523&partnerID=40&md5=f28d3191cd394ad776bac019bdf26803
https://arxiv.org/pdf/2112.07298
http://elar.urfu.ru/handle/10995/130378
10.1016/j.topol.2023.108523
85152299192
000983478500001
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель Elsevier B.V.
 
Источник Topology and its Applications
Topology and its Applications