Просмотреть запись

Atomistic-informed kinetic phase-field modeling of non-equilibrium crystal growth during rapid solidification

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Atomistic-informed kinetic phase-field modeling of non-equilibrium crystal growth during rapid solidification
 
Автор Kavousi, S.
Ankudinov, V.
Galenko, P. K.
Asle, Zaeem, M.
 
Тематика KINETIC PHASE-FIELD
MOLECULAR DYNAMICS
NON-EQUILIBRIUM CRYSTAL GROWTH
RAPID SOLIDIFICATION
CONTROL NONLINEARITIES
CRYSTAL GROWTH
FORECASTING
GROWTH KINETICS
KINETICS
PHASE INTERFACES
RAPID SOLIDIFICATION
UNDERCOOLING
ATOMISTICS
INTERFACE WIDTHS
INTERFACIAL PROPERTY
KINETIC PHASE
KINETIC PHASE-FIELD
NON EQUILIBRIUM
NON-EQUILIBRIUM CRYSTAL GROWTH
PHASE FIELD MODELS
PHASE FIELDS
SOLID-LIQUID INTERFACES
MOLECULAR DYNAMICS
 
Описание A novel method based on molecular dynamics (MD) is developed to make the kinetic phase-field (PF) model quantitative in predicting non-equilibrium crystal growth during rapid solidification. MD-calculated variations of the diffuse solid-liquid (SL) interface width versus interface velocity are used to parameterize the kinetic PF model. Two approaches are adopted to study temperature independent and temperature dependent interfacial properties on the accuracy of predictions. MD simulations of slow and rapid solidification regimes for an fcc metal (Ni) show that the SL interface width decreases by increasing the solidification velocity. Fitting the dynamic response of the interface width to the traveling wave solution of hyperbolic PF equation determines the target SL interfacial properties, namely propagation velocity and diffusion coefficient. Independently, the MD calculations of nonlinearity in velocity versus undercooling is used to validate the atomistic-informed kinetic PF model. Both parabolic and kinetic PF models parameterized by temperature-independent material properties can accurately simulate the linear portion of near-equilibrium crystal growth during solidification. However, they both fail to predict the crystal growth kinetics during rapid solidification. The kinetic PF model parameterized with the temperature-dependent SL interfacial properties can accurately predict both the equilibrium and non-equilibrium crystal growth during slow and rapid solidification. MD simulation results on Ni along with some analytical analysis on the variation of interface width versus interface velocity show that for fcc metals, in general, {110} interface has a smaller propagation velocity in comparison to {100} interface, resulting in a larger non-linear behavior at smaller undercooling. © 2023 The Author(s)
2031800; National Science Foundation, NSF: TG-DMR140008; Russian Science Foundation, RSF: 21-19-00279
This study was supported by the National Science Foundation , NSF-CMMI 2031800 , and by Russian Science Foundation under 21-19-00279 . S. Kavousi and M. Asle Zaeem are grateful for the supercomputing time allocation provided by the NSF 's ACCESS (Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support), Award No. TG-DMR140008 .
 
Дата 2024-04-05T16:20:36Z
2024-04-05T16:20:36Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Kavousi, S, Ankudinov, V, Galenko, PK & Asle Zaeem, M 2023, 'Atomistic-informed kinetic phase-field modeling of non-equilibrium crystal growth during rapid solidification', Acta Materialia, Том. 253, 118960. https://doi.org/10.1016/j.actamat.2023.118960
Kavousi, S., Ankudinov, V., Galenko, P. K., & Asle Zaeem, M. (2023). Atomistic-informed kinetic phase-field modeling of non-equilibrium crystal growth during rapid solidification. Acta Materialia, 253, [118960]. https://doi.org/10.1016/j.actamat.2023.118960
1359-6454
Final
All Open Access, Hybrid Gold
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85154532602&doi=10.1016%2fj.actamat.2023.118960&partnerID=40&md5=4d21e36977ce877c2910895f726b114c
https://doi.org/10.1016/j.actamat.2023.118960
http://elar.urfu.ru/handle/10995/130435
10.1016/j.actamat.2023.118960
85154532602
 
Язык en
 
Связанные ресурсы info:eu-repo/grantAgreement/RSF//21-19-00279
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель Acta Materialia Inc
 
Источник Acta Materialia
Acta Materialia