A Hausdorff compact space is metrizable if and only if it is a continuous open image of the Sorgenfrey line
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
A Hausdorff compact space is metrizable if and only if it is a continuous open image of the Sorgenfrey line
|
|
Автор |
Smolin, V.
|
|
Тематика |
METRIZABLE COMPACT SPACE
OPEN MAP SORGENFREY LINE |
|
Описание |
In this note we prove that a regular continuous open image of the Sorgenfrey line with an uncountable weight has a closed subspace that is homeomorphic to the Sorgenfrey line. As a corollary we deduce the theorem in the title. © 2023 Elsevier B.V.
Ministry of Education and Science of the Russian Federation, Minobrnauka: 075-02-2023-913 The author would like to thank Vova Ivchenko for the help with translation of this paper from Russian to English. The work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2023-913 ). |
|
Дата |
2024-04-05T16:25:48Z
2024-04-05T16:25:48Z 2023 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) |info:eu-repo/semantics/submittedVersion |
|
Идентификатор |
Smolin, V 2023, 'A Hausdorff compact space is metrizable if and only if it is a continuous open image of the Sorgenfrey line', Topology and its Applications, Том. 336, 108616. https://doi.org/10.1016/j.topol.2023.108616
Smolin, V. (2023). A Hausdorff compact space is metrizable if and only if it is a continuous open image of the Sorgenfrey line. Topology and its Applications, 336, [108616]. https://doi.org/10.1016/j.topol.2023.108616 0166-8641 Final All Open Access, Green https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161692510&doi=10.1016%2fj.topol.2023.108616&partnerID=40&md5=9f4901acbc38347ee4489dd8ff1389a7 https://arxiv.org/pdf/2110.12808 http://elar.urfu.ru/handle/10995/130555 10.1016/j.topol.2023.108616 85161692510 001024694200001 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
|
|
Формат |
application/pdf
|
|
Издатель |
Elsevier B.V.
|
|
Источник |
Topology and its Applications
Topology and its Applications |
|