Просмотреть запись

A Hausdorff compact space is metrizable if and only if it is a continuous open image of the Sorgenfrey line

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие A Hausdorff compact space is metrizable if and only if it is a continuous open image of the Sorgenfrey line
 
Автор Smolin, V.
 
Тематика METRIZABLE COMPACT SPACE
OPEN MAP
SORGENFREY LINE
 
Описание In this note we prove that a regular continuous open image of the Sorgenfrey line with an uncountable weight has a closed subspace that is homeomorphic to the Sorgenfrey line. As a corollary we deduce the theorem in the title. © 2023 Elsevier B.V.
Ministry of Education and Science of the Russian Federation, Minobrnauka: 075-02-2023-913
The author would like to thank Vova Ivchenko for the help with translation of this paper from Russian to English. The work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2023-913 ).
 
Дата 2024-04-05T16:25:48Z
2024-04-05T16:25:48Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/submittedVersion
 
Идентификатор Smolin, V 2023, 'A Hausdorff compact space is metrizable if and only if it is a continuous open image of the Sorgenfrey line', Topology and its Applications, Том. 336, 108616. https://doi.org/10.1016/j.topol.2023.108616
Smolin, V. (2023). A Hausdorff compact space is metrizable if and only if it is a continuous open image of the Sorgenfrey line. Topology and its Applications, 336, [108616]. https://doi.org/10.1016/j.topol.2023.108616
0166-8641
Final
All Open Access, Green
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161692510&doi=10.1016%2fj.topol.2023.108616&partnerID=40&md5=9f4901acbc38347ee4489dd8ff1389a7
https://arxiv.org/pdf/2110.12808
http://elar.urfu.ru/handle/10995/130555
10.1016/j.topol.2023.108616
85161692510
001024694200001
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель Elsevier B.V.
 
Источник Topology and its Applications
Topology and its Applications