Laser-Induced Transferred Antibacterial Nanoparticles for Mixed-Species Bacteria Biofilm Inactivation
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Laser-Induced Transferred Antibacterial Nanoparticles for Mixed-Species Bacteria Biofilm Inactivation
|
|
Автор |
Nastulyavichus, A.
Tolordava, E. Kudryashov, S. Khmelnitskii, R. Ionin, A. |
|
Тематика |
ANTIBACTERIAL NANOPARTICLES
BACTERICIDAL EFFECT LIFT MIXED-SPECIES BACTERIAL BIOFILMS COPPER ESCHERICHIA COLI FATTY ACIDS FOURIER TRANSFORM INFRARED SPECTROSCOPY SILVER NANOPARTICLES SYNTHESIS (CHEMICAL) ANTI-BACTERIAL ACTIVITY ANTIBACTERIAL NANOPARTICLE ANTIBACTERIALS BACTERIAL BIOFILM BACTERICIDAL EFFECTS LASER INDUCED LASER-INDUCED FORWARD TRANSFER MIXED SPECIES MIXED-SPECIES BACTERIAL BIOFILM SYNTHESISED BIOFILMS |
|
Описание |
In the present study, copper and silver nanoparticles with a concentration of 20 µg/cm2 were synthesized using the method of laser-induced forward transfer (LIFT). The antibacterial activity of the nanoparticles was tested against bacterial biofilms that are common in nature, formed by several types of microorganisms (mixed-species bacteria biofilms): Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The Cu nanoparticles showed complete inhibition of the bacteria biofilms used. In the course of the work, a high level of antibacterial activity was demonstrated by nanoparticles. This activity manifested in the complete suppression of the daily biofilm, with the number of bacteria decreasing by 5–8 orders of magnitude from the initial concentration. To confirm antibacterial activity, and determine reductions in cell viability, the Live/Dead Bacterial Viability Kit was used. FTIR spectroscopy revealed that after Cu NP treatment, there was in a slight shift in the region, which corresponded to fatty acids, indicating a decrease in the relative motional freedom of molecules. © 2023 by the authors.
Ministry of Education and Science of the Russian Federation, Minobrnauka This research was funded by the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program). |
|
Дата |
2024-04-05T16:27:01Z
2024-04-05T16:27:01Z 2023 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) |info:eu-repo/semantics/publishedVersion |
|
Идентификатор |
Nastulyavichus, A, Tolordava, E, Kudryashov, S, Khmelnitskii, R & Ionin, A 2023, 'Laser-Induced Transferred Antibacterial Nanoparticles for Mixed-Species Bacteria Biofilm Inactivation', Materials, Том. 16, № 12, 4309. https://doi.org/10.3390/ma16124309
Nastulyavichus, A., Tolordava, E., Kudryashov, S., Khmelnitskii, R., & Ionin, A. (2023). Laser-Induced Transferred Antibacterial Nanoparticles for Mixed-Species Bacteria Biofilm Inactivation. Materials, 16(12), [4309]. https://doi.org/10.3390/ma16124309 1996-1944 Final All Open Access, Gold https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163798587&doi=10.3390%2fma16124309&partnerID=40&md5=0dce3cbe647e56988d0f3e18c9b8acec https://www.mdpi.com/1996-1944/16/12/4309/pdf?version=1686468094 http://elar.urfu.ru/handle/10995/130598 10.3390/ma16124309 85163798587 001015060100001 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by https://creativecommons.org/licenses/by/4.0/ |
|
Формат |
application/pdf
|
|
Издатель |
MDPI
|
|
Источник |
Materials
Materials |
|