Просмотреть запись

Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse
 
Автор Bashkirtseva, I.
Pisarchik, A. N.
Ryashko, L.
 
Тематика CHAOS
CHEMICAL SYNAPSE
MAP-BASED NEURON MODELS
NEURONAL DYNAMICS
NOISE-INDUCED EFFECTS
STOCHASTIC SENSITIVITY
SYNCHRONIZATION
DYNAMICS
NEURONS
NUMERICAL METHODS
STOCHASTIC MODELS
STOCHASTIC SYSTEMS
CHEMICAL SYNAPSE
COUPLING STRENGTHS
IN-PHASE
MAP-BASED NEURON MODEL
MULTISTABILITY
NEURON MODELING
NEURONAL DYNAMICS
NOISE-INDUCED EFFECT
STOCHASTIC SENSITIVITY
STOCHASTICS
SYNCHRONIZATION
 
Описание We study complex dynamics of two Rulkov neurons unidirectionally connected via a chemical synapse with respect to three control parameters: (i) a parameter responsible for the type of dynamical behavior of a solitary neuron, (ii) coupling strength, and (iii) noise intensity. The coupled system exhibits various scenarios on the route from a stable equilibrium to chaos with respect to the coupling strength. We observe a variety of dynamical regimes, including mono-, bi- and tri-stability, order-chaos transitions and vice versa, as well as the coexistence of in-phase and anti-phase synchronization. We also study transitions between in-phase and out-of-phase synchronization with statistics on the duration of synchronization intervals and transitions from order to chaos. In addition to numerical simulations, we demonstrate the effectiveness of the analytical confidence ellipses method based on stochastic sensitivity approach. © 2023 The Author(s)
Russian Science Foundation, RSF: 21-11-00062
The work was supported by the Russian Science Foundation (project No. 21-11-00062).
 
Дата 2024-04-05T16:27:17Z
2024-04-05T16:27:17Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Bashkirtseva, I, Pisarchik, AN & Ryashko, L 2023, 'Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse', Communications in Nonlinear Science and Numerical Simulation, Том. 125, 107383. https://doi.org/10.1016/j.cnsns.2023.107383
Bashkirtseva, I., Pisarchik, A. N., & Ryashko, L. (2023). Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse. Communications in Nonlinear Science and Numerical Simulation, 125, [107383]. https://doi.org/10.1016/j.cnsns.2023.107383
1007-5704
Final
All Open Access, Hybrid Gold
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163986624&doi=10.1016%2fj.cnsns.2023.107383&partnerID=40&md5=124dd290ecbbb134d6e714232e02c744
https://doi.org/10.1016/j.cnsns.2023.107383
http://elar.urfu.ru/handle/10995/130611
10.1016/j.cnsns.2023.107383
85163986624
001029016100001
 
Язык en
 
Связанные ресурсы info:eu-repo/grantAgreement/RSF//21-11-00062
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by-nc-nd
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Формат application/pdf
 
Издатель Elsevier B.V.
 
Источник Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation