Solution-processed In2Se3 nanosheets for ultrasensitive and highly selective NO2 gas sensors
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Solution-processed In2Se3 nanosheets for ultrasensitive and highly selective NO2 gas sensors
|
|
Автор |
D'Olimpio, G.
Galstyan, V. Ghica, C. Vorokhta, M. Istrate, M. C. Kuo, C. -N. Lue, C. S. Boukhvalov, D. W. Comini, E. Politano, A. |
|
Тематика |
CARBON DIOXIDE
CARBON MONOXIDE CHEMICAL DETECTION CHEMICAL SENSORS GAS DETECTORS GASES INDIUM COMPOUNDS NANOSHEETS NITROGEN OXIDES SURFACE PROPERTIES VOLATILE ORGANIC COMPOUNDS GAS DETECTION SYSTEMS GAS-SENSORS HARSH ENVIRONMENT SCIENCE EXPERIMENTS SELECTIVITY AND SENSITIVITY SIMULATION SCIENCE SOLUTION-PROCESSED SURFACE SCIENCE THEORETICAL SIMULATION ULTRASENSITIVE SELENIUM COMPOUNDS |
|
Описание |
In this work, we demonstrate that solution-processed In2Se3 nanosheets exhibit exceptional selectivity and sensitivity to NO2 gas, making them a promising candidate for gas detection systems. Theoretical simulations and surface-science experiments reveal the unique surface properties of In2Se3 nanosheets, which prevent physisorption of oxygen, carbon monoxide, and carbon dioxide, making them remarkably stable towards oxidation and CO-poisoning. Moreover, we show that NO2 molecules adsorb stably on In2Se3 nanosheets, particularly on Se vacancies, even at high temperatures. The coadsorption of water further enhances NO2 sticking on the In2Se3 surface, making it an ideal material for gas sensing applications in humid and harsh environments. The fabricated In2Se3 gas sensors exhibit excellent and reversible sensing response to NO2 gas, with a limit of detection of 5 ppb at 300 °C, and a highly selective response to NO2 compared to other gases and volatile organic compounds. Our sensors outperform other two-dimensional (2D) semiconductors, metal oxides, and their heterostructures, thanks to the unique surface properties of In2Se3 nanosheets. Importantly, the number of layers and termination of the surface almost have no impact on the sensing performance of In2Se3, which is advantageous for practical applications. The high sensitivity, selectivity, and stability of In2Se3 nanosheets make them an exciting platform for the fabrication of high-performance gas sensors, particularly in harsh environments, such as industrial settings or outdoor monitoring. Moreover, our solution processing approach enables scalable production of the sensors. Additionally, their unique surface properties make them an attractive candidate for developing complex composite nanostructures with tailored gas sensing characteristics for various applications. © 2023 The Royal Society of Chemistry.
Ministerul Cercetării, Inovării şi Digitalizării, MCID: 332/390008/29.12.2020-SMIS 109522; Nanjing University of Aeronautics and Astronautics, NUAA The authors are grateful to Jessica Occhiuzzi for liquid-phase exfoliation. AP thanks CERIC-ERIC and NFFA-Europe for the access to NAP-XPS, XPEEM and HRTEM facilities. The simulations have been supported by High Performance Computing Platform of Nanjing University of Aeronautics and Astronautics. DWB acknowledges research funding from Jiangsu Innovative and Entrepreneurial Talents Project. CG and MCI acknowledge funding from the Ministry of Research, Innovation and Digitization (Romania) through contract POC No. 332/390008/29.12.2020-SMIS 109522. |
|
Дата |
2024-04-05T16:27:27Z
2024-04-05T16:27:27Z 2023 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) |info:eu-repo/semantics/publishedVersion |
|
Идентификатор |
D'olimpio, G, Galstyan, V, Ghica, C, Vorokhta, M, Istrate, MС, Kuo, C-N, Lue, CS, Boukhvalov, DW, Comini, E & Politano, A 2023, 'Solution-processed In2Se3 nanosheets for ultrasensitive and highly selective NO2 gas sensors', Journal of Materials Chemistry A, Том. 11, № 23, стр. 12315-12327. https://doi.org/10.1039/D3TA01390A
D'olimpio, G., Galstyan, V., Ghica, C., Vorokhta, M., Istrate, M. С., Kuo, C-N., Lue, C. S., Boukhvalov, D. W., Comini, E., & Politano, A. (2023). Solution-processed In2Se3 nanosheets for ultrasensitive and highly selective NO2 gas sensors. Journal of Materials Chemistry A, 11(23), 12315-12327. https://doi.org/10.1039/D3TA01390A 2050-7488 Final All Open Access, Hybrid Gold https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164188589&doi=10.1039%2fd3ta01390a&partnerID=40&md5=9738644e1609b814fca63003903ae294 https://pubs.rsc.org/en/content/articlepdf/2023/ta/d3ta01390a http://elar.urfu.ru/handle/10995/130621 10.1039/d3ta01390a 85164188589 000998965500001 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by https://creativecommons.org/licenses/by/4.0/ |
|
Формат |
application/pdf
|
|
Издатель |
Royal Society of Chemistry
|
|
Источник |
Journal of Materials Chemistry A
Journal of Materials Chemistry A |
|