Просмотреть запись

Solution-processed In2Se3 nanosheets for ultrasensitive and highly selective NO2 gas sensors

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Solution-processed In2Se3 nanosheets for ultrasensitive and highly selective NO2 gas sensors
 
Автор D'Olimpio, G.
Galstyan, V.
Ghica, C.
Vorokhta, M.
Istrate, M. C.
Kuo, C. -N.
Lue, C. S.
Boukhvalov, D. W.
Comini, E.
Politano, A.
 
Тематика CARBON DIOXIDE
CARBON MONOXIDE
CHEMICAL DETECTION
CHEMICAL SENSORS
GAS DETECTORS
GASES
INDIUM COMPOUNDS
NANOSHEETS
NITROGEN OXIDES
SURFACE PROPERTIES
VOLATILE ORGANIC COMPOUNDS
GAS DETECTION SYSTEMS
GAS-SENSORS
HARSH ENVIRONMENT
SCIENCE EXPERIMENTS
SELECTIVITY AND SENSITIVITY
SIMULATION SCIENCE
SOLUTION-PROCESSED
SURFACE SCIENCE
THEORETICAL SIMULATION
ULTRASENSITIVE
SELENIUM COMPOUNDS
 
Описание In this work, we demonstrate that solution-processed In2Se3 nanosheets exhibit exceptional selectivity and sensitivity to NO2 gas, making them a promising candidate for gas detection systems. Theoretical simulations and surface-science experiments reveal the unique surface properties of In2Se3 nanosheets, which prevent physisorption of oxygen, carbon monoxide, and carbon dioxide, making them remarkably stable towards oxidation and CO-poisoning. Moreover, we show that NO2 molecules adsorb stably on In2Se3 nanosheets, particularly on Se vacancies, even at high temperatures. The coadsorption of water further enhances NO2 sticking on the In2Se3 surface, making it an ideal material for gas sensing applications in humid and harsh environments. The fabricated In2Se3 gas sensors exhibit excellent and reversible sensing response to NO2 gas, with a limit of detection of 5 ppb at 300 °C, and a highly selective response to NO2 compared to other gases and volatile organic compounds. Our sensors outperform other two-dimensional (2D) semiconductors, metal oxides, and their heterostructures, thanks to the unique surface properties of In2Se3 nanosheets. Importantly, the number of layers and termination of the surface almost have no impact on the sensing performance of In2Se3, which is advantageous for practical applications. The high sensitivity, selectivity, and stability of In2Se3 nanosheets make them an exciting platform for the fabrication of high-performance gas sensors, particularly in harsh environments, such as industrial settings or outdoor monitoring. Moreover, our solution processing approach enables scalable production of the sensors. Additionally, their unique surface properties make them an attractive candidate for developing complex composite nanostructures with tailored gas sensing characteristics for various applications. © 2023 The Royal Society of Chemistry.
Ministerul Cercetării, Inovării şi Digitalizării, MCID: 332/390008/29.12.2020-SMIS 109522; Nanjing University of Aeronautics and Astronautics, NUAA
The authors are grateful to Jessica Occhiuzzi for liquid-phase exfoliation. AP thanks CERIC-ERIC and NFFA-Europe for the access to NAP-XPS, XPEEM and HRTEM facilities. The simulations have been supported by High Performance Computing Platform of Nanjing University of Aeronautics and Astronautics. DWB acknowledges research funding from Jiangsu Innovative and Entrepreneurial Talents Project. CG and MCI acknowledge funding from the Ministry of Research, Innovation and Digitization (Romania) through contract POC No. 332/390008/29.12.2020-SMIS 109522.
 
Дата 2024-04-05T16:27:27Z
2024-04-05T16:27:27Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор D'olimpio, G, Galstyan, V, Ghica, C, Vorokhta, M, Istrate, MС, Kuo, C-N, Lue, CS, Boukhvalov, DW, Comini, E & Politano, A 2023, 'Solution-processed In2Se3 nanosheets for ultrasensitive and highly selective NO2 gas sensors', Journal of Materials Chemistry A, Том. 11, № 23, стр. 12315-12327. https://doi.org/10.1039/D3TA01390A
D'olimpio, G., Galstyan, V., Ghica, C., Vorokhta, M., Istrate, M. С., Kuo, C-N., Lue, C. S., Boukhvalov, D. W., Comini, E., & Politano, A. (2023). Solution-processed In2Se3 nanosheets for ultrasensitive and highly selective NO2 gas sensors. Journal of Materials Chemistry A, 11(23), 12315-12327. https://doi.org/10.1039/D3TA01390A
2050-7488
Final
All Open Access, Hybrid Gold
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164188589&doi=10.1039%2fd3ta01390a&partnerID=40&md5=9738644e1609b814fca63003903ae294
https://pubs.rsc.org/en/content/articlepdf/2023/ta/d3ta01390a
http://elar.urfu.ru/handle/10995/130621
10.1039/d3ta01390a
85164188589
000998965500001
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель Royal Society of Chemistry
 
Источник Journal of Materials Chemistry A
Journal of Materials Chemistry A