Просмотреть запись

High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates
 
Автор Hendy, A. S.
De, Staelen, R. H.
Aldraiweesh, A. A.
Zaky, M. A.
 
Тематика CONVERGENCE ANALYSIS
GALERKIN-LEGENDRE SPECTRAL METHOD
L2-1Σ SCHEME
TIME-SPACE FRACTIONAL COUPLED GROSS¢PITAEVSKII EQUATION
 
Описание A coupled system of fractional order Gross-Pitaevskii equations is under consideration in which the time-fractional derivative is given in Caputo sense and the spatial fractional order derivative is of Riesz type. This kind of model may shed light on some time-evolution properties of the rotating two-component Bose¢ Einstein condensates. An unconditional convergent high-order scheme is proposed based on L2-1σ finite difference approximation in the time direction and Galerkin Legendre spectral approximation in the space direction. This combined scheme is designed in an easy algorithmic style. Based on ideas of discrete fractional Grönwall inequalities, we can prove the convergence theory of the scheme. Accordingly, a second order of convergence and a spectral convergence order in time and space, respectively, without any constraints on temporal meshes and the specified degree of Legendre polynomials N. Some numerical experiments are proposed to support the theoretical results. © 2023 the Author(s).
King Saud University, KSU
M. A. Zaky and A. Aldraiweesh extend their appreciation to the Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia).
 
Дата 2024-04-05T16:28:18Z
2024-04-05T16:28:18Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Hendy, A, De Staelen, R, Aldraiweesh, A & Zaky, M 2023, 'High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates', Aims mathematics, Том. 8, № 10, стр. 22766-22788. https://doi.org/10.3934/math.20231160
Hendy, A., De Staelen, R., Aldraiweesh, A., & Zaky, M. (2023). High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. Aims mathematics, 8(10), 22766-22788. https://doi.org/10.3934/math.20231160
2473-6988
Final
All Open Access, Gold
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164913180&doi=10.3934%2fmath.20231160&partnerID=40&md5=ef8358555cc30e90979baf215fa5a513
https://doi.org/10.3934/math.20231160
http://elar.urfu.ru/handle/10995/130643
10.3934/math.20231160
85164913180
001037070200006
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель American Institute of Mathematical Sciences
 
Источник AIMS Mathematics
AIMS Mathematics