High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates
|
|
Автор |
Hendy, A. S.
De, Staelen, R. H. Aldraiweesh, A. A. Zaky, M. A. |
|
Тематика |
CONVERGENCE ANALYSIS
GALERKIN-LEGENDRE SPECTRAL METHOD L2-1Σ SCHEME TIME-SPACE FRACTIONAL COUPLED GROSS¢PITAEVSKII EQUATION |
|
Описание |
A coupled system of fractional order Gross-Pitaevskii equations is under consideration in which the time-fractional derivative is given in Caputo sense and the spatial fractional order derivative is of Riesz type. This kind of model may shed light on some time-evolution properties of the rotating two-component Bose¢ Einstein condensates. An unconditional convergent high-order scheme is proposed based on L2-1σ finite difference approximation in the time direction and Galerkin Legendre spectral approximation in the space direction. This combined scheme is designed in an easy algorithmic style. Based on ideas of discrete fractional Grönwall inequalities, we can prove the convergence theory of the scheme. Accordingly, a second order of convergence and a spectral convergence order in time and space, respectively, without any constraints on temporal meshes and the specified degree of Legendre polynomials N. Some numerical experiments are proposed to support the theoretical results. © 2023 the Author(s).
King Saud University, KSU M. A. Zaky and A. Aldraiweesh extend their appreciation to the Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia). |
|
Дата |
2024-04-05T16:28:18Z
2024-04-05T16:28:18Z 2023 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) |info:eu-repo/semantics/publishedVersion |
|
Идентификатор |
Hendy, A, De Staelen, R, Aldraiweesh, A & Zaky, M 2023, 'High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates', Aims mathematics, Том. 8, № 10, стр. 22766-22788. https://doi.org/10.3934/math.20231160
Hendy, A., De Staelen, R., Aldraiweesh, A., & Zaky, M. (2023). High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. Aims mathematics, 8(10), 22766-22788. https://doi.org/10.3934/math.20231160 2473-6988 Final All Open Access, Gold https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164913180&doi=10.3934%2fmath.20231160&partnerID=40&md5=ef8358555cc30e90979baf215fa5a513 https://doi.org/10.3934/math.20231160 http://elar.urfu.ru/handle/10995/130643 10.3934/math.20231160 85164913180 001037070200006 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by https://creativecommons.org/licenses/by/4.0/ |
|
Формат |
application/pdf
|
|
Издатель |
American Institute of Mathematical Sciences
|
|
Источник |
AIMS Mathematics
AIMS Mathematics |
|