Просмотреть запись

Enhancing seismic design of non-structural components implementing artificial intelligence approach: Predicting component dynamic amplification factors

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Enhancing seismic design of non-structural components implementing artificial intelligence approach: Predicting component dynamic amplification factors
 
Автор Bhavani, B. D.
Challagulla, S. P.
Noroozinejad, Farsangi, E.
Hossain, I.
Manne, M.
 
Тематика DYNAMIC INTERACTION
INDIA
PRIMARY STRUCTURE
SECONDARY STRUCTURE
TELANGANA
TUNING RATIO
ACCELERATION
NEURAL NETWORKS
SEISMOLOGY
COMPONENT DYNAMICS
DYNAMIC AMPLIFICATION FACTORS
DYNAMIC INTERACTION
INDIA
NON-STRUCTURAL COMPONENTS
PRIMARY STRUCTURES
SECONDARY STRUCTURES
SEISMIC PERFORMANCE
TELANGANUM
TUNING RATIO
SEISMIC DESIGN
 
Описание The seismic performance of non-structural components (NSCs) has been the focus of intensive study during the last few decades. Modern building codes define design forces on components using too simple relationships. The component accelerates faster than the floor acceleration to which it is connected. Therefore, component dynamic amplification factors (CDAFs) are calculated in this work to quantify the amplification in the acceleration of NSCs for the various damping ratios and tuning ratios of the NSC, and the primary structural periods. From the analysis results, it was observed that CDAF peaks are either underestimated or overestimated by the code-based formulae. A prediction model to ascertain the CDAFs was also developed using artificial neural networks (ANNs). Following that, the suggested model is contrasted with the established relationships from the past research. The ANN model's coefficient of correlation (R) was 0.97. Hence, using an ANN algorithm reduces the necessity of laborious and complex analysis. ©2023 The author(s).
 
Дата 2024-04-05T16:28:22Z
2024-04-05T16:28:22Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Bhavani, BD, Challagulla, S, Noroozinejad Farsangi, E, Hossain, I & Manne, M 2023, 'Enhancing Seismic Design of Non-structural Components Implementing Artificial Intelligence Approach: Predicting Component Dynamic Amplification Factors', International Journal of Engineering: Transactions A: Basics, Том. 36, № 7, стр. 1211-1218. https://doi.org/10.5829/IJE.2023.36.07A.02
Bhavani, B. D., Challagulla, S., Noroozinejad Farsangi, E., Hossain, I., & Manne, M. (2023). Enhancing Seismic Design of Non-structural Components Implementing Artificial Intelligence Approach: Predicting Component Dynamic Amplification Factors. International Journal of Engineering: Transactions A: Basics, 36(7), 1211-1218. https://doi.org/10.5829/IJE.2023.36.07A.02
1728-144X
Final
All Open Access, Gold
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85165056482&doi=10.5829%2fije.2023.36.07a.02&partnerID=40&md5=29a3f6c18956ea080b4151a58dfb0d6a
https://www.ije.ir/article_170047_592497291dcb9314bf3f75c3d718aead.pdf
http://elar.urfu.ru/handle/10995/130647
10.5829/ije.2023.36.07a.02
85165056482
001030701300002
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель Materials and Energy Research Center
 
Источник International Journal of Engineering
International Journal of Engineering, Transactions B: Applications