Generalization of the Grothendieck's theorem
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Generalization of the Grothendieck's theorem
|
|
Автор |
Al'perin, M.
Osipov, A. V. |
|
Тематика |
FUNCTION SPACE
SET-OPEN TOPOLOGY TOPOLOGICAL GAME TOPOLOGY OF UNIFORM CONVERGENCE UNIFORM SPACE |
|
Описание |
In this paper, we obtain a generalization of Grothendieck's theorem for the space of continuous mappings Cλ,μ(X,Y) where Y is a complete uniform space with the uniformity μ endowed with the topology of uniform convergence on the family λ of subsets of X. A new topological game is defined - the Asanov-Velichko game, which makes it possible to single out a class of topological spaces of the Grothendieck type. The developed technique is used to generalize the Grothendieck's theorem for the space of continuous mappings endowed with the set-open topology. © 2023 Elsevier B.V.
Russian Science Foundation, RSF: 23-21-00195 The research of the second author was supported by the Russian Science Foundation (RSF Grant No. 23-21-00195 ). |
|
Дата |
2024-04-05T16:30:36Z
2024-04-05T16:30:36Z 2023 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) |info:eu-repo/semantics/submittedVersion |
|
Идентификатор |
Al'perin, M & Osipov, AV 2023, 'Generalization of the Grothendieck's theorem', Topology and its Applications, Том. 338, 108648. https://doi.org/10.1016/j.topol.2023.108648
Al'perin, M., & Osipov, A. V. (2023). Generalization of the Grothendieck's theorem. Topology and its Applications, 338, [108648]. https://doi.org/10.1016/j.topol.2023.108648 0166-8641 Final All Open Access, Green https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166645999&doi=10.1016%2fj.topol.2023.108648&partnerID=40&md5=d16bd366a9d5d17c5a37d70178bff242 https://arxiv.org/pdf/2305.04968 http://elar.urfu.ru/handle/10995/130695 10.1016/j.topol.2023.108648 85166645999 001052979900001 |
|
Язык |
en
|
|
Связанные ресурсы |
info:eu-repo/grantAgreement/RSF//23-21-00195
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
|
|
Формат |
application/pdf
|
|
Издатель |
Elsevier B.V.
|
|
Источник |
Topology and its Applications
Topology and its Applications |
|