Просмотреть запись

Generalization of the Grothendieck's theorem

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Generalization of the Grothendieck's theorem
 
Автор Al'perin, M.
Osipov, A. V.
 
Тематика FUNCTION SPACE
SET-OPEN TOPOLOGY
TOPOLOGICAL GAME
TOPOLOGY OF UNIFORM CONVERGENCE
UNIFORM SPACE
 
Описание In this paper, we obtain a generalization of Grothendieck's theorem for the space of continuous mappings Cλ,μ(X,Y) where Y is a complete uniform space with the uniformity μ endowed with the topology of uniform convergence on the family λ of subsets of X. A new topological game is defined - the Asanov-Velichko game, which makes it possible to single out a class of topological spaces of the Grothendieck type. The developed technique is used to generalize the Grothendieck's theorem for the space of continuous mappings endowed with the set-open topology. © 2023 Elsevier B.V.
Russian Science Foundation, RSF: 23-21-00195
The research of the second author was supported by the Russian Science Foundation (RSF Grant No. 23-21-00195 ).
 
Дата 2024-04-05T16:30:36Z
2024-04-05T16:30:36Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/submittedVersion
 
Идентификатор Al'perin, M & Osipov, AV 2023, 'Generalization of the Grothendieck's theorem', Topology and its Applications, Том. 338, 108648. https://doi.org/10.1016/j.topol.2023.108648
Al'perin, M., & Osipov, A. V. (2023). Generalization of the Grothendieck's theorem. Topology and its Applications, 338, [108648]. https://doi.org/10.1016/j.topol.2023.108648
0166-8641
Final
All Open Access, Green
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166645999&doi=10.1016%2fj.topol.2023.108648&partnerID=40&md5=d16bd366a9d5d17c5a37d70178bff242
https://arxiv.org/pdf/2305.04968
http://elar.urfu.ru/handle/10995/130695
10.1016/j.topol.2023.108648
85166645999
001052979900001
 
Язык en
 
Связанные ресурсы info:eu-repo/grantAgreement/RSF//23-21-00195
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель Elsevier B.V.
 
Источник Topology and its Applications
Topology and its Applications