Просмотреть запись

Resolvability and complete accumulation points

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Resolvability and complete accumulation points
 
Автор Lipin, A. E.
 
Тематика COMPLETEACCUMULATION POINT
COUNTABLY COMPACT SPACE
LINDELÖF SPACE
RESOLVABILITY
 
Описание We prove that: I. For every regular Lindelöf space X if | X| = Δ (X) and cf | X| ≠ ω , then X is maximally resolvable; II. For every regular countably compact space X if | X| = Δ (X) and cf | X| = ω , then X is maximally resolvable. Here Δ (X) , the dispersion character of X, is the minimum cardinality of a nonempty open subset of X. Statements I and II are corollaries of the main result: for every regular space X if | X| = Δ (X) and every set A⊆ X of cardinality cf | X| has a complete accumulation point, then X is maximally resolvable. Moreover, regularity here can be weakened to π -regularity, and the Lindelöf property can be weakened to the linear Lindelöf property. © 2023, Akadémiai Kiadó, Budapest, Hungary.
Ministry of Education and Science of the Russian Federation, Minobrnauka: 075-02-2023-913
The work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2023-913).
 
Дата 2024-04-05T16:31:57Z
2024-04-05T16:31:57Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/submittedVersion
 
Идентификатор Lipin, AE 2023, 'Resolvability and complete accumulation points', Acta Mathematica Hungarica, Том. 170, № 2, стр. 661-669. https://doi.org/10.1007/s10474-023-01358-y
Lipin, A. E. (2023). Resolvability and complete accumulation points. Acta Mathematica Hungarica, 170(2), 661-669. https://doi.org/10.1007/s10474-023-01358-y
0236-5294
Final
All Open Access, Green
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169005990&doi=10.1007%2fs10474-023-01358-y&partnerID=40&md5=6777478a180b71427ec464f8b4f4581f
https://arxiv.org/pdf/2301.12748
http://elar.urfu.ru/handle/10995/130745
10.1007/s10474-023-01358-y
85169005990
001070591600012
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель Springer Science and Business Media B.V.
 
Источник Acta Mathematica Hungarica
Acta Mathematica Hungarica