Designing an Efficient Lead-Free Perovskite Solar Cell through a Computational Method
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Designing an Efficient Lead-Free Perovskite Solar Cell through a Computational Method
|
|
Автор |
Bhattarai, S.
Kalita, P. K. Hossain, I. Alsubaie, A. S. Mahmoud, K. H. Ansari, M. Z. Janicek, P. |
|
Тематика |
HOLE TRANSPORT MATERIAL (HTM)
METHYLAMMONIUM TIN BROMIDE (MASNBR3) PEROVSKITE (PVK) POWER CONVERSION EFFICIENCY (PCE) |
|
Описание |
Organometallic halide perovskite (PVK)-based solar cells (PSC) have gained significant popularity owing to their efficiency, adaptability, and versatility. However, the presence of lead in conventional PVK poses environmental risks and hinders effective commercialization. Although lead-free PVK solar cells have been developed, their conversion efficiency is limited due to intrinsic losses. To address this challenge, we present a simulation study focusing on methylammonium tin bromide (MASnBr3) as an alternative material. In our investigation, the MASnBr3 layers are strategically placed between a copper iodide (CuI)-based hole transporting material (HTM) and a zinc oxide (ZnO)-based electron transporting material (ETM). We optimize the active layer thickness, operating temperature, defect density analysis, and series resistances to assess device performance. Furthermore, we employ contour mapping, considering both thickness and defect density, for a detailed investigation. Our primary objective is to achieve unprecedented efficiency in lead-free MASnBr3-based PSCs. Remarkably, our study achieves the highest JSC (short-circuit current density) of 34.09 mA/cm2, VOC (open-circuit voltage) of 1.15 V, FF (fill factor) of 82.06%, and optimized conversion efficiency of 32.19%. These advancements in conversion efficiency pave the way for the development of lead-free PVK solar cells in the desired direction. © 2023 by the authors.
Taif University, TU; Deanship of Scientific Research, King Saud University The authors would also like to express their sincere gratitude to Marc Burgelman for providing the open-source SCAPS-1D simulating software. The researchers would like to acknowledge the Deanship of Scientific Research, Taif University, for funding this work. |
|
Дата |
2024-04-05T16:32:06Z
2024-04-05T16:32:06Z 2023 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) |info:eu-repo/semantics/publishedVersion |
|
Идентификатор |
Bhattarai, S, Kalita, PK, Hossain, I, Alsubaie, AS, Mahmoud, KH, Ansari, MZ & Janicek, P 2023, 'Designing an Efficient Lead-Free Perovskite Solar Cell through a Computational Method', Crystals, Том. 13, № 8, 1175. https://doi.org/10.3390/cryst13081175
Bhattarai, S., Kalita, P. K., Hossain, I., Alsubaie, A. S., Mahmoud, K. H., Ansari, M. Z., & Janicek, P. (2023). Designing an Efficient Lead-Free Perovskite Solar Cell through a Computational Method. Crystals, 13(8), [1175]. https://doi.org/10.3390/cryst13081175 2073-4352 Final All Open Access, Gold https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169168269&doi=10.3390%2fcryst13081175&partnerID=40&md5=8854863fd20fc1b81bcedbe70828f72b https://www.mdpi.com/2073-4352/13/8/1175/pdf?version=1690523954 http://elar.urfu.ru/handle/10995/130753 10.3390/cryst13081175 85169168269 001055421900001 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by https://creativecommons.org/licenses/by/4.0/ |
|
Формат |
application/pdf
|
|
Издатель |
Multidisciplinary Digital Publishing Institute (MDPI)
|
|
Источник |
Crystals
Crystals |
|