Просмотреть запись

Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations
 
Автор Gomoyunov, M. I.
Plaksin, A. R.
 
Тематика MINIMAX SOLUTIONS
PATH-DEPENDENT HAMILTON–JACOBI EQUATIONS
VARIATIONAL PRINCIPLE
VISCOSITY SOLUTIONS
 
Описание In the paper, we consider a path-dependent Hamilton–Jacobi equation with coinvariant derivatives over the space of continuous functions. Such equations arise from optimal control problems and differential games for time-delay systems. We study generalized solutions of the considered Hamilton–Jacobi equation both in the minimax and in the viscosity sense. A minimax solution is defined as a functional which epigraph and subgraph satisfy certain conditions of weak invariance, while a viscosity solution is defined in terms of a pair of inequalities for coinvariant sub- and supergradients. We prove that these two notions are equivalent, which is the main result of the paper. As a corollary, we obtain comparison and uniqueness results for viscosity solutions of a Cauchy problem for the considered Hamilton–Jacobi equation and a right-end boundary condition. The proof of the main result is based on a certain property of the coinvariant subdifferential. To establish this property, we develop a technique going back to the proofs of multidirectional mean-value inequalities. In particular, the absence of the local compactness property of the underlying continuous function space is overcome by using Borwein–Preiss variational principle with an appropriate gauge-type functional. © 2023 Elsevier Inc.
We would like to thank Prof. Andrea Cosso for a discussion on the subject of this paper and for pointing us to the paper [27].
 
Дата 2024-04-05T16:32:29Z
2024-04-05T16:32:29Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/submittedVersion
 
Идентификатор Gomoyunov, MI & Plaksin, AR 2023, 'Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations', Journal of Functional Analysis, Том. 285, № 11, 110155. https://doi.org/10.1016/j.jfa.2023.110155
Gomoyunov, M. I., & Plaksin, A. R. (2023). Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations. Journal of Functional Analysis, 285(11), [110155]. https://doi.org/10.1016/j.jfa.2023.110155
0022-1236
Final
All Open Access, Green
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170275130&doi=10.1016%2fj.jfa.2023.110155&partnerID=40&md5=d406ca1c0ed9f3420f88dbaadf058133
https://arxiv.org/pdf/2204.09275
http://elar.urfu.ru/handle/10995/130773
10.1016/j.jfa.2023.110155
85170275130
001080404600001
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель Academic Press Inc.
 
Источник Journal of Functional Analysis
Journal of Functional Analysis