Numerical analysis of pile group, piled raft, and footing using finite element software PLAXIS 2D and GEO5
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Numerical analysis of pile group, piled raft, and footing using finite element software PLAXIS 2D and GEO5
|
|
Автор |
Chimdesa, F. F.
Chimdesa, F. F. Jilo, N. Z. Hulagabali, A. Babalola, O. E. Tiyasha, T. Ramaswamy, K. Kumar, A. Bhagat, S. K. |
|
Тематика |
ARTICLE
CIVIL ENGINEERING DECISION MAKING FINITE ELEMENT ANALYSIS LOAD BEARING PROFESSIONALISM SANDY SOIL SOFTWARE THICKNESS |
|
Описание |
Foundation plays a vital role in weight transfer from the superstructure to substructure. However, foundation characteristics such as pile group, piled raft, and footing remain unfolded due to their highly non-linear behaviour in different soil types. Bibliography analysis using VOSvierwer algorithm supported the significance of the research. Hence, this study investigates the load-bearing capacity of different types of foundations, including footings, pile groups, and piled rafts, by analyzing experimental data using finite element tools such as PLAXIS 2D and GEO5. The analysis involves examining the impact of various factors such as the influence of surcharge and the effect of different soil types on the load-bearing capabilities of the different types of foundation. For footing, parametric investigations using PLAXIS 2D are conducted to explore deformational changes. Pile groups are analyzed using GEO5 to assess their factor of safety (FOS.) and settling under various criteria, such as pile length and soil type. The study also provides insight into selecting the right type of foundation for civil engineering practice. Findings showed that different soil types have varying deformational behaviours under high loads with sandy soil having less horizontal deformation than clayey soil. Also, it was observed that increasing the pile thickness by 50% resulted in a reduction of 13.88% in settlement and an improvement of 16.66% in the FOS. In conclusion, this study highlights the importance of professionalism, exceptional talent, and outstanding decision-making when assessing the load-bearing capabilities of various foundation types for building structures. © 2023, Springer Nature Limited.
Ambo University, AU The authors are thankful to the Department of Civil Engineering, Ambo University for providing the necessary material and resources to achieve the set objectives. Also, the authors would like to acknowledge the anonymous reviewers who comments have improved this manuscript. |
|
Дата |
2024-04-05T16:33:03Z
2024-04-05T16:33:03Z 2023 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) |info:eu-repo/semantics/publishedVersion |
|
Идентификатор |
Chimdesa, FF, Chimdesa, FF, Jilo, NZ, Hulagabali, A, Babalola, OE, Tiyasha, T, Ramaswamy, K, Kumar, A & Bhagat, SK 2023, 'Numerical analysis of pile group, piled raft, and footing using finite element software PLAXIS 2D and GEO5', Scientific Reports, Том. 13, № 1. https://doi.org/10.1038/s41598-023-42783-x
Chimdesa, F. F., Chimdesa, F. F., Jilo, N. Z., Hulagabali, A., Babalola, O. E., Tiyasha, T., Ramaswamy, K., Kumar, A., & Bhagat, S. K. (2023). Numerical analysis of pile group, piled raft, and footing using finite element software PLAXIS 2D and GEO5. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-42783-x 2045-2322 Final All Open Access, Gold, Green https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172235574&doi=10.1038%2fs41598-023-42783-x&partnerID=40&md5=02f169e7abe794b5768f4a733c5e2c19 https://www.nature.com/articles/s41598-023-42783-x.pdf http://elar.urfu.ru/handle/10995/130801 10.1038/s41598-023-42783-x 85172235574 001080555400022 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by https://creativecommons.org/licenses/by/4.0/ |
|
Формат |
application/pdf
|
|
Издатель |
Nature Research
|
|
Источник |
Scientific Reports
Scientific Reports |
|