Просмотреть запись

Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows
 
Автор Ershkov, S.
Burmasheva, N.
Leshchenko, D. D.
Prosviryakov, E. Y.
 
Тематика CONVECTION
COUNTERFLOW
DIFFUSION
DUFOUR EFFECT
EXACT SOLUTION
OVERDETERMINED SYSTEM
SORET EFFECT
THERMAL DIFFUSION
 
Описание We present a new exact solution of the thermal diffusion equations for steady-state shear flows of a binary fluid. Shear fluid flows are used in modeling and simulating large-scale currents of the world ocean, motions in thin layers of fluid, fluid flows in processes, and apparatuses of chemical technology. To describe the steady shear flows of an incompressible fluid, the system of Navier–Stokes equations in the Boussinesq approximation is redefined, so the construction of exact and numerical solutions to the equations of hydrodynamics is a very difficult and urgent task. A non-trivial exact solution is constructed in the Lin-Sidorov-Aristov class. For this class of exact solutions, the hydrodynamic fields (velocity field, pressure field, temperature field, and solute concentration field) were considered as linear forms in the x and y coordinates. The coefficients of linear forms depend on the third coordinate z. Thus, when considering a shear flow, the two-dimensional velocity field depends on three coordinates. It is worth noting that the solvability condition given in the article imposes a condition (relation) only between the velocity gradients. A theorem on the uniqueness of the exact solution in the Lin–Sidorov–Aristov class is formulated. The remaining coefficients of linear forms for hydrodynamic fields have functional arbitrariness. To illustrate the exact solution of the overdetermined system of Oberbeck–Boussinesq equations, a boundary value problem was solved to describe the complex convection of a vertical swirling fluid without its preliminary rotation. It was shown that the velocity field is highly stratified. Complex countercurrents are recorded in the fluid. © 2023 by the authors.
 
Дата 2024-04-05T16:33:32Z
2024-04-05T16:33:32Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Ershkov, S, Burmasheva, N, Leshchenko, D & Prosviryakov, E 2023, 'Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows', Symmetry, Том. 15, № 9, 1730. https://doi.org/10.3390/sym15091730
Ershkov, S., Burmasheva, N., Leshchenko, D., & Prosviryakov, E. (2023). Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows. Symmetry, 15(9), [1730]. https://doi.org/10.3390/sym15091730
2073-8994
Final
All Open Access, Gold, Green
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172759221&doi=10.3390%2fsym15091730&partnerID=40&md5=ca392168ae974dcbfde0491c93ed7358
https://www.mdpi.com/2073-8994/15/9/1730/pdf?version=1694181123
http://elar.urfu.ru/handle/10995/130820
10.3390/sym15091730
85172759221
001074145300001
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель Multidisciplinary Digital Publishing Institute (MDPI)
 
Источник Symmetry
Symmetry