Implication of radiation on the thermal behavior of a partially wetted dovetail fin using an artificial neural network
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Implication of radiation on the thermal behavior of a partially wetted dovetail fin using an artificial neural network
|
|
Автор |
Nimmy, P.
Nagaraja, K. V. Srilatha, P. Karthik, K. Sowmya, G. Kumar, R. S. V. Khan, U. Hussain, S. M. Hendy, A. S. Ali, M. R. |
|
Тематика |
ARTIFICIAL NEURAL NETWORK
DOVETAIL FIN FIN PARTIALLY WET FIN FINS (HEAT EXCHANGE) HEAT CONVECTION HEAT RADIATION ORDINARY DIFFERENTIAL EQUATIONS RUNGE KUTTA METHODS THERMAL CONDUCTIVITY WETTING DOVETAIL FIN EXTENDED SURFACES FIN LEVENBERG-MARQUARDT NEURAL-NETWORKS PARTIALLY WET FIN TEMPERATURE VARIANCE THERMAL BEHAVIOURS THERMAL MODEL WET FINS NEURAL NETWORKS |
|
Описание |
The simultaneous convection-radiation heat transfer of a partially wetted dovetail extended surface is investigated in this study. Also, the temperature variance behavior of the dovetail extended surface (DES) is estimated through thermal models for partially wet and dry conditions using the neural network with the Levenberg-Marquardt scheme (NNLMS). The corresponding governing energy equations of a dovetail fin are presented as a set of ordinary differential equations (ODE), which are reduced to a non-dimensional form using dimensionless terms. Further, the resulting coupled conductive, convective, and radiative dimensionless ODEs are numerically solved utilizing the Runge-Kutta-Fehlberg fourth-fifth order (RKF-45) scheme. Using graphical illustrations, the resultant solutions are physically determined by considering the effects of various nondimensional variables on thermal behavior. From the outcomes, it is established that the thermal conductivity parameter enhances the thermal distribution in a partially wetted dovetail fin, and an upsurge in convection-conduction variable, temperature ratio parameter, radiation-conduction, and wet parameter diminishes the temperature profile of the considered extended surface. The modelled problem's NNLMS efficacy is demonstrated by achieving the best convergence and unique numerically assessed quantified results. The outcomes indicate that the strategy successfully resolves the partially wetted fin problem. © 2023 The Author(s)
The researchers wish to extend their sincere gratitude to the Deanship of Scientific Research at the Islamic University of Madinah for the support provided to the Post-Publishing Program 2. |
|
Дата |
2024-04-05T16:34:06Z
2024-04-05T16:34:06Z 2023 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) |info:eu-repo/semantics/publishedVersion |
|
Идентификатор |
Nimmy, PM, Nagaraja, KV, Srilatha, P, Karthik, K, Sowmya, G, Kumar, RSV, Khan, U, Hussain, SM, Hendy, A & Ali, M 2023, 'Implication of radiation on the thermal behavior of a partially wetted dovetail fin using an artificial neural network', Case Studies in Thermal Engineering, Том. 51, 103552. https://doi.org/10.1016/j.csite.2023.103552
Nimmy, P. M., Nagaraja, K. V., Srilatha, P., Karthik, K., Sowmya, G., Kumar, R. S. V., Khan, U., Hussain, S. M., Hendy, A., & Ali, M. (2023). Implication of radiation on the thermal behavior of a partially wetted dovetail fin using an artificial neural network. Case Studies in Thermal Engineering, 51, [103552]. https://doi.org/10.1016/j.csite.2023.103552 2214-157X Final All Open Access, Gold https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173209342&doi=10.1016%2fj.csite.2023.103552&partnerID=40&md5=eec3dab262857ed1f8d5e84484d73e58 https://doi.org/10.1016/j.csite.2023.103552 http://elar.urfu.ru/handle/10995/130838 10.1016/j.csite.2023.103552 85173209342 001088623800001 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by-nc-nd https://creativecommons.org/licenses/by-nc-nd/4.0/ |
|
Формат |
application/pdf
|
|
Издатель |
Elsevier Ltd
|
|
Источник |
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering |
|