Просмотреть запись

Space-dependent variable-order time-fractional wave equation: Existence and uniqueness of its weak solution

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Space-dependent variable-order time-fractional wave equation: Existence and uniqueness of its weak solution
 
Автор Van Bockstal, K.
Hendy, A. S.
Zaky, M. A.
 
Тематика NON-AUTONOMOUS
ROTHE’S TIME DISCRETIZATION
TIME FRACTIONAL WAVE EQUATION
UNIQUENESS AND EXISTENCE
VARIABLE COEffiCIENTS
VARIABLE-ORDER
 
Описание The investigation of an initial-boundary value problem for a fractional wave equation with space-dependent variable-order wherein the coefficients have a dependency on the spatial and time variables is the concern of this work. This type of variable-order fractional differential operator originates in the modelling of viscoelastic materials. The global in time existence of a unique weak solution to the model problem has been proved under appropriate conditions on the data. Rothe’s time discretization method is applied to achieve that purpose. © 2023 NISC (Pty) Ltd.
 
Дата 2024-04-05T16:34:15Z
2024-04-05T16:34:15Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Van Bockstal, K, Hendy, A & Zaky, M 2023, 'Space-dependent variable-order time-fractional wave equation: Existence and uniqueness of its weak solution', Quaestiones Mathematicae, Том. 46, № 8, стр. 1695-1715. https://doi.org/10.2989/16073606.2022.2110959
Van Bockstal, K., Hendy, A., & Zaky, M. (2023). Space-dependent variable-order time-fractional wave equation: Existence and uniqueness of its weak solution. Quaestiones Mathematicae, 46(8), 1695-1715. https://doi.org/10.2989/16073606.2022.2110959
1607-3606
Final
All Open Access, Green
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137715725&doi=10.2989%2f16073606.2022.2110959&partnerID=40&md5=c1033464c7a4af03bd21dc056d3a6248
https://biblio.ugent.be/publication/01GP0KPQRNW305VW47DXQ3TPXP/file/01GP0KYRS2VR3N1ZFPK9H6V2E8.pdf
http://elar.urfu.ru/handle/10995/130847
10.2989/16073606.2022.2110959
85137715725
000849598300001
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель Taylor and Francis Ltd.
 
Источник Quaestiones Mathematicae
Quaestiones Mathematicae