Просмотреть запись

Machine learning approaches for real-time forecasting of solar still distillate output

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Machine learning approaches for real-time forecasting of solar still distillate output
 
Автор Murugan, D. K.
Said, Z.
Panchal, H.
Gupta, N. K.
Subramani, S.
Kumar, A.
Sadasivuni, K. K.
 
Тематика DECISION TREE MODELLING
MACHINE LEARNING TECHNIQUES
PREDICTIVE MODELS
PRODUCTIVITY ESTIMATION
SOLAR STILL
 
Описание Solar stills provide a promising avenue for freshwater production in regions grappling with water scarcity, especially remote locales. However, their efficiency is often constrained by the variable climatic conditions. Conventional prediction methods fall short in consistently forecasting the yield, leaving a significant gap in optimizing solar still operations. Recognizing this, the introduction of machine learning becomes pivotal. With a robust predictive model, operators can avoid inefficiencies, inconsistent outputs, and sub-optimal resource utilization. The primary objective of this research is to determine the most suitable machine learning model tailored for predicting solar still output under specific environmental conditions. This research work assessed various machine learning models, including linear regression, decision trees, random forest, support vector machines, and multilayer perceptron. Evaluation metrics encompassed Mean Absolute Error (MAE), cross-validation, grid search, and randomized search techniques. Our results identified the Decision Tree model, registering a MAE of 5.43 and 5.74 through random and grid search methods, respectively, as the preeminent predictor for our dataset. This machine learning-centric methodology elevates the precision of solar still output predictions and paves the way for enhanced solar still designs and superior optimization of solar energy conversion mechanisms. © 2023 The Author(s)
Qatar National Research Fund, QNRF: MME03-1226-210042
This work was supported by Qatar National Research Fund under the grant no. MME03-1226-210042 . The statements made herein are solely the responsibility of the authors.
 
Дата 2024-04-05T16:34:42Z
2024-04-05T16:34:42Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Murugan, DK, Said, Z, Panchal, H, Gupta, N, Subramani, S, Kumar, A & Sadasivuni, K 2023, 'Machine learning approaches for real-time forecasting of solar still distillate output', Environmental Challenges, Том. 13, 100779. https://doi.org/10.1016/j.envc.2023.100779
Murugan, D. K., Said, Z., Panchal, H., Gupta, N., Subramani, S., Kumar, A., & Sadasivuni, K. (2023). Machine learning approaches for real-time forecasting of solar still distillate output. Environmental Challenges, 13, [100779]. https://doi.org/10.1016/j.envc.2023.100779
2667-0100
Final
All Open Access, Gold
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174639403&doi=10.1016%2fj.envc.2023.100779&partnerID=40&md5=55e0dd5bd9ce1a544c4612df77ac5691
https://doi.org/10.1016/j.envc.2023.100779
http://elar.urfu.ru/handle/10995/130871
10.1016/j.envc.2023.100779
85174639403
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by-nc-nd
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Формат application/pdf
 
Издатель Elsevier B.V.
 
Источник Environmental Challenges
Environmental Challenges