Просмотреть запись

Self-Organization in Randomly Forced Diffusion Systems: A Stochastic Sensitivity Technique

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Self-Organization in Randomly Forced Diffusion Systems: A Stochastic Sensitivity Technique
 
Автор Kolinichenko, A.
Bashkirtseva, I.
Ryashko, L.
 
Тематика DIFFUSION MODEL
NOISE-INDUCED TRANSITIONS
PATTERNS
RANDOM DISTURBANCES
SELF-ORGANIZATION
STOCHASTIC SENSITIVITY
 
Описание The problem with the analysis of noise-induced transitions between patterns in distributed stochastic systems is considered. As a key model, we use the spatially extended dynamical “phytoplankton-herbivore” system with diffusion. We perform the parametric bifurcation analysis of this model and determine the Turing instability zone, where non-homogeneous patterns are generated by diffusion. The multistability of this deterministic model with the coexistence of several waveform pattern–attractors is found. We study how noise affects these non-homogeneous patterns and estimate the dispersion of random states using a new technique based on stochastic sensitivity function (SSF) analysis and the confidence domain method. To investigate the preferences in noise-induced transitions between patterns, we analyze and compare the results of this theoretical approach with the statistics extracted from the direct numerical simulation. © 2023 by the authors.
075-02-2022-877; Ministry of Education and Science of the Russian Federation, Minobrnauka; Russian Science Foundation, RSF: N 21-11-00062
The work of A.K. on the bifurcation analysis of the deterministic diffusion population model is supported by the Ministry of Science and Higher Education of the Russian Federation (Ural Mathematical Center project No. 075-02-2022-877). The work of A.K., I.B., and L.R. on the research and development of the stochastic sensitivity theory of pattern–attractors and their application to the study of noise-induced effects was supported by the Russian Science Foundation (N 21-11-00062).
 
Дата 2024-04-05T16:36:19Z
2024-04-05T16:36:19Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Kolinichenko, A, Bashkirtseva, I & Ryashko, L 2023, 'Self-Organization in Randomly Forced Diffusion Systems: A Stochastic Sensitivity Technique', Mathematics, Том. 11, № 2, 451. https://doi.org/10.3390/math11020451
Kolinichenko, A., Bashkirtseva, I., & Ryashko, L. (2023). Self-Organization in Randomly Forced Diffusion Systems: A Stochastic Sensitivity Technique. Mathematics, 11(2), [451]. https://doi.org/10.3390/math11020451
2227-7390
Final
All Open Access, Gold
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146741941&doi=10.3390%2fmath11020451&partnerID=40&md5=8becd4b8b0cba5324d9a19cc3ed6cdc7
https://www.mdpi.com/2227-7390/11/2/451/pdf?version=1674220442
http://elar.urfu.ru/handle/10995/130947
10.3390/math11020451
85146741941
000918737200001
 
Язык en
 
Связанные ресурсы info:eu-repo/grantAgreement/RSF//21-11-00062
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель MDPI
 
Источник Mathematics
Mathematics