Просмотреть запись

Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay
 
Автор Pimenov, V.
Lekomtsev, A.
 
Тематика DELAY
NONLINEAR SUPERDIFFUSION COEFFICIENT
SPACE-FRACTIONAL DIFFUSION EQUATION
 
Описание For a space-fractional diffusion equation with a nonlinear superdiffusion coefficient and with the presence of a delay effect, the grid numerical method is constructed. Interpolation and extrapolation procedures are used to account for the functional delay. At each time step, the algorithm reduces to solving a linear system with a main matrix that has diagonal dominance. The convergence of the method in the maximum norm is proved. The results of numerical experiments with constant and variable delays are presented. © 2023 by the authors.
Russian Science Foundation, RSF: 22-21-00075
This research was funded by the Russian Science Foundation grant number 22-21-00075.
 
Дата 2024-04-05T16:36:33Z
2024-04-05T16:36:33Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Pimenov, V & Lekomtsev, A 2023, 'Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay', Mathematics, Том. 11, № 18, стр. 3941. https://doi.org/10.3390/math11183941
Pimenov, V., & Lekomtsev, A. (2023). Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay. Mathematics, 11(18), 3941. https://doi.org/10.3390/math11183941
2227-7390
Final
All Open Access, Gold
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176607311&doi=10.3390%2fmath11183941&partnerID=40&md5=8c5f78cba4ec704527bae540362bf8e8
https://www.mdpi.com/2227-7390/11/18/3941/pdf?version=1695038369
http://elar.urfu.ru/handle/10995/130966
10.3390/math11183941
85176607311
001073981800001
 
Язык en
 
Связанные ресурсы info:eu-repo/grantAgreement/RSF//22-21-00075
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель Multidisciplinary Digital Publishing Institute (MDPI)
 
Источник Mathematics
Mathematics