Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay
|
|
Автор |
Pimenov, V.
Lekomtsev, A. |
|
Тематика |
DELAY
NONLINEAR SUPERDIFFUSION COEFFICIENT SPACE-FRACTIONAL DIFFUSION EQUATION |
|
Описание |
For a space-fractional diffusion equation with a nonlinear superdiffusion coefficient and with the presence of a delay effect, the grid numerical method is constructed. Interpolation and extrapolation procedures are used to account for the functional delay. At each time step, the algorithm reduces to solving a linear system with a main matrix that has diagonal dominance. The convergence of the method in the maximum norm is proved. The results of numerical experiments with constant and variable delays are presented. © 2023 by the authors.
Russian Science Foundation, RSF: 22-21-00075 This research was funded by the Russian Science Foundation grant number 22-21-00075. |
|
Дата |
2024-04-05T16:36:33Z
2024-04-05T16:36:33Z 2023 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) |info:eu-repo/semantics/publishedVersion |
|
Идентификатор |
Pimenov, V & Lekomtsev, A 2023, 'Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay', Mathematics, Том. 11, № 18, стр. 3941. https://doi.org/10.3390/math11183941
Pimenov, V., & Lekomtsev, A. (2023). Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay. Mathematics, 11(18), 3941. https://doi.org/10.3390/math11183941 2227-7390 Final All Open Access, Gold https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176607311&doi=10.3390%2fmath11183941&partnerID=40&md5=8c5f78cba4ec704527bae540362bf8e8 https://www.mdpi.com/2227-7390/11/18/3941/pdf?version=1695038369 http://elar.urfu.ru/handle/10995/130966 10.3390/math11183941 85176607311 001073981800001 |
|
Язык |
en
|
|
Связанные ресурсы |
info:eu-repo/grantAgreement/RSF//22-21-00075
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by https://creativecommons.org/licenses/by/4.0/ |
|
Формат |
application/pdf
|
|
Издатель |
Multidisciplinary Digital Publishing Institute (MDPI)
|
|
Источник |
Mathematics
Mathematics |
|