Просмотреть запись

Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer
 
Автор Kulyabin, M.
Zhdanov, A.
Dolganov, A.
Ronkin, M.
Borisov, V.
Maier, A.
 
Тематика BIOMEDICAL RESEARCH
CLASSIFICATION
DEEP LEARNING
ELECTRORETINOGRAM
ELECTRORETINOGRAPHY
ERG
WAVELET ANALYSIS
ADULT
CHILD
COLOR VISION
ELECTRORETINOGRAPHY
HUMAN
MACHINE LEARNING
PHYSIOLOGY
PROCEDURES
RETINA
WAVELET ANALYSIS
ADULT
CHILD
COLOR VISION
ELECTRORETINOGRAPHY
HUMANS
MACHINE LEARNING
RETINA
WAVELET ANALYSIS
 
Описание The electroretinogram (ERG) is a clinical test that records the retina's electrical response to light. Analysis of the ERG signal offers a promising way to study different retinal diseases and disorders. Machine learning-based methods are expected to play a pivotal role in achieving the goals of retinal diagnostics and treatment control. This study aims to improve the classification accuracy of the previous work using the combination of three optimal mother wavelet functions. We apply Continuous Wavelet Transform (CWT) on a dataset of mixed pediatric and adult ERG signals and show the possibility of simultaneous analysis of the signals. The modern Visual Transformer-based architectures are tested on a time-frequency representation of the signals. The method provides 88% classification accuracy for Maximum 2.0 ERG, 85% for Scotopic 2.0, and 91% for Photopic 2.0 protocols, which on average improves the result by 7.6% compared to previous work.
 
Дата 2024-04-05T16:36:37Z
2024-04-05T16:36:37Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Kulyabin, M, Zhdanov, A, Dolganov, A, Ronkin, M, Borisov, V & Maier, A 2023, 'Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer', Sensors, Том. 23, № 21, 8727. https://doi.org/10.3390/s23218727
Kulyabin, M., Zhdanov, A., Dolganov, A., Ronkin, M., Borisov, V., & Maier, A. (2023). Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer. Sensors, 23(21), [8727]. https://doi.org/10.3390/s23218727
1424-8220
Final
All Open Access, Gold, Green
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176902341&doi=10.3390%2fs23218727&partnerID=40&md5=a7422368b7887f59532c6920557cb1d8
https://www.mdpi.com/1424-8220/23/21/8727/pdf?version=1698301695
http://elar.urfu.ru/handle/10995/130974
10.3390/s23218727
85176902341
001100427400001
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Источник Sensors
Sensors (Basel, Switzerland)