Просмотреть запись

New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations
 
Автор Hassan, T. S.
Bohner, M.
Florentina, I. L.
Abdel, Menaem, A.
Mesmouli, M. B.
 
Тематика DYNAMIC EQUATIONS
LINEAR
OSCILLATION BEHAVIOR
SECOND ORDER
TIME SCALES
 
Описание In this work, we deduce a new criterion that guarantees the oscillation of solutions to linear Sturm–Liouville delay noncanonical dynamic equations; these results emulate the criteria of the Hille and Ohriska types for canonical dynamic equations, and these results also solve an open problem in many works in the literature. Several examples are offered, demonstrating that the findings achieved are precise, practical, and adaptable. © 2023 by the authors.
This research was funded by the University of Oradea.
 
Дата 2024-04-05T16:37:17Z
2024-04-05T16:37:17Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Hassan, TS, Bohner, M, Florentina, IL, Abdel menaem, A & Mesmouli, MB 2023, 'New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations', Mathematics, Том. 11, № 23, 4850. https://doi.org/10.3390/math11234850
Hassan, T. S., Bohner, M., Florentina, I. L., Abdel menaem, A., & Mesmouli, M. B. (2023). New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations. Mathematics, 11(23), [4850]. https://doi.org/10.3390/math11234850
2227-7390
Final
All Open Access, Gold
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178917414&doi=10.3390%2fmath11234850&partnerID=40&md5=95a7ee324e7fe839c71e5caf5aaaba10
https://www.mdpi.com/2227-7390/11/23/4850/pdf?version=1701445927
http://elar.urfu.ru/handle/10995/131028
10.3390/math11234850
85178917414
001116045200001
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель Multidisciplinary Digital Publishing Institute (MDPI)
 
Источник Mathematics
Mathematics