New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations
|
|
Автор |
Hassan, T. S.
Bohner, M. Florentina, I. L. Abdel, Menaem, A. Mesmouli, M. B. |
|
Тематика |
DYNAMIC EQUATIONS
LINEAR OSCILLATION BEHAVIOR SECOND ORDER TIME SCALES |
|
Описание |
In this work, we deduce a new criterion that guarantees the oscillation of solutions to linear Sturm–Liouville delay noncanonical dynamic equations; these results emulate the criteria of the Hille and Ohriska types for canonical dynamic equations, and these results also solve an open problem in many works in the literature. Several examples are offered, demonstrating that the findings achieved are precise, practical, and adaptable. © 2023 by the authors.
This research was funded by the University of Oradea. |
|
Дата |
2024-04-05T16:37:17Z
2024-04-05T16:37:17Z 2023 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) |info:eu-repo/semantics/publishedVersion |
|
Идентификатор |
Hassan, TS, Bohner, M, Florentina, IL, Abdel menaem, A & Mesmouli, MB 2023, 'New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations', Mathematics, Том. 11, № 23, 4850. https://doi.org/10.3390/math11234850
Hassan, T. S., Bohner, M., Florentina, I. L., Abdel menaem, A., & Mesmouli, M. B. (2023). New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations. Mathematics, 11(23), [4850]. https://doi.org/10.3390/math11234850 2227-7390 Final All Open Access, Gold https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178917414&doi=10.3390%2fmath11234850&partnerID=40&md5=95a7ee324e7fe839c71e5caf5aaaba10 https://www.mdpi.com/2227-7390/11/23/4850/pdf?version=1701445927 http://elar.urfu.ru/handle/10995/131028 10.3390/math11234850 85178917414 001116045200001 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by https://creativecommons.org/licenses/by/4.0/ |
|
Формат |
application/pdf
|
|
Издатель |
Multidisciplinary Digital Publishing Institute (MDPI)
|
|
Источник |
Mathematics
Mathematics |
|