Просмотреть запись

Periodical Ultra-Modulation of Broadened Laser Spectra in Dielectrics at Variable Ultrashort Laser Pulsewidths: Ultrafast Plasma, Plasmonic and Nanoscale Structural Effects

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Periodical Ultra-Modulation of Broadened Laser Spectra in Dielectrics at Variable Ultrashort Laser Pulsewidths: Ultrafast Plasma, Plasmonic and Nanoscale Structural Effects
 
Автор Kudryashov, S.
Danilov, P.
Gorevoy, A.
Kovalov, V.
Kosobokov, M.
Akhmatkhanov, A.
Lisjikh, B.
Turygin, A.
Greshnyakov, E.
Shur, V.
 
Тематика BRAGG GRATINGS
BULK LONGITUDINAL NANOGRATINGS
DIAMOND
ELECTRON-HOLE PLASMA
ELECTRON–PHONON THERMALIZATION
LITHIUM NIOBATE
NANOPLASMONICS
SELF-PHASE MODULATION BROADENING
TRANSMISSION SPECTRA
ULTRASHORT-PULSE LASER
 
Описание Self-phase modulation (SPM) broadening of prompt laser spectra was studied in a transmission mode in natural and synthetic diamonds at variable laser wavelengths (515 and 1030 nm), pulse energies and widths (0.3–12 ps, positively chirped pulses), providing their filamentary propagation. Besides the monotonous SPM broadening of the laser spectra versus pulse energy, which was more pronounced for the (sub)picosecond pulsewidths and more nitrogen-doped natural diamond with its intra-gap impurity states, periodical low-frequency modulation was observed in the spectra at the shorter laser pulsewidths, indicating dynamic Bragg filtering of the supercontinuum due to ultrafast plasma and nanoplasmonic effects. Damping of broadening and ultra-modulation for the longer picosecond pulsewidths was related to the thermalized electron-hole plasma regime established for the laser pulsewidths longer, than 2 ps. Unexpectedly, at higher pulse energies and corresponding longer, well-developed microfilaments, the number of low-intensity, low-frequency sideband spectral modulation features counterintuitively increases, thus indicating dynamic variation of the periods in the longitudinal plasma Bragg gratings along the filaments due to prompt secondary laser–plasmon interactions. The underlying sub- and/or near-wavelength longitudinal nanoscale Bragg gratings produced by femtosecond laser pulses in this regime could be visualized in less hard lithium niobate by atomic force microscopy cross-sectional analysis in the correlation with the corresponding sideband spectral components, supporting the anticipated Bragg filtering mechanism and envisioning the corresponding grating periods. © 2023 by the authors.
Ministry of Education and Science of the Russian Federation, Minobrnauka: 075–15- 2021–677; Ural Federal University, UrFU: 2968
The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged. The equipment of the Ural Center for Shared Use “Modern nanotechnology” of Ural Federal University (Reg.# 2968), which is supported by the Ministry of Science and Higher Education of Russian Federation (Project #075–15- 2021–677), was used.
 
Дата 2024-04-05T16:37:58Z
2024-04-05T16:37:58Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Kudryashov, S, Danilov, P, Gorevoy, A, Kovalov, V, Kosobokov, M, Akhmatkhanov, A, Lisjikh, B, Turygin, A, Greshnyakov, E & Shur, V 2023, 'Periodical Ultra-Modulation of Broadened Laser Spectra in Dielectrics at Variable Ultrashort Laser Pulsewidths: Ultrafast Plasma, Plasmonic and Nanoscale Structural Effects', Photonics, Том. 10, № 12, 1316. https://doi.org/10.3390/photonics10121316
Kudryashov, S., Danilov, P., Gorevoy, A., Kovalov, V., Kosobokov, M., Akhmatkhanov, A., Lisjikh, B., Turygin, A., Greshnyakov, E., & Shur, V. (2023). Periodical Ultra-Modulation of Broadened Laser Spectra in Dielectrics at Variable Ultrashort Laser Pulsewidths: Ultrafast Plasma, Plasmonic and Nanoscale Structural Effects. Photonics, 10(12), [1316]. https://doi.org/10.3390/photonics10121316
2304-6732
Final
All Open Access, Gold
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180223079&doi=10.3390%2fphotonics10121316&partnerID=40&md5=82febf106fc99dbb09449a987336ea1a
https://www.mdpi.com/2304-6732/10/12/1316/pdf?version=1701231711
http://elar.urfu.ru/handle/10995/131064
10.3390/photonics10121316
85180223079
001130795900001
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель Multidisciplinary Digital Publishing Institute (MDPI)
 
Источник Photonics
Photonics