Просмотреть запись

Natural Products from Marine Actinomycete Genus Salinispora Might Inhibit 3CLpro and PLpro Proteins of SARS-CoV-2: An In Silico Evidence

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Natural Products from Marine Actinomycete Genus Salinispora Might Inhibit 3CLpro and PLpro Proteins of SARS-CoV-2: An In Silico Evidence
 
Автор Pokharkar, O.
Zyryanov, G. V.
Tsurkan, M. V.
 
Тематика 3CLPRO
ANTIVIRAL
MPRO
MARINE DRUGS
NATURAL PRODUCTS
PLPRO
REPURPOSING
S. ARENICOLA
S. PACIFICA
S. TROPICA
SALINISPORA
SARS-COV-2
27 O DEMETHYL 25 O DESACETYLRIFAMYCIN
3 AMINO 2 METHYL N (1R)-1 (NAPHTHALEN 1 YL) ETHYL BENZAMIDE
7 TRIHYDROXY 2 PHENYL 4H CHROMEN 4 ONE
ANTIPROTEALIDE
ARENAMIDE A
ARENAMIDE B
ARENAMIDE C
CORONAVIRUS 3C PROTEASE
CYCLOMARAZINE A
CYCLOMARIN A
CYCLOMARIN D
DEFEROXAMINE
EMERICELLAMIDE
IKARUGAMYCIN
LOMAIVITICIN
LOMAIVITICIN A
LOMAIVITICIN D
LOMAIVITICIN E
LYMPHOSTIN
LYMPHOSTINOL
MYCALAMIDE A
N (3 OXODECANOYL) L HOMOSERINE LACTONE
N (3 OXODODECANOYL)HOMOSERINE LACTONE
NATURAL PRODUCT
NEOLYMPHOSTIN A
NEOLYMPHOSTIN B
NEOLYMPHOSTIN C
NEOLYMPHOSTIN D
PACIFICANONE A
PACIFICANONE B
PAPAIN-LIKE PROTEASE
RETIMYCIN A
RETIMYCIN B
SALINAPHTHOQUINONE B
SALINICHELIN B
SALINICHELIN C
SALINILACTONE A
SALINILACTONE B
SALINILACTONE C
SALINILACTONE D
SALINILACTONE E
SALINILACTONE F
SALINILACTONE G
SALINILACTONE H
SALINIPOSTIN A
SALINIPOSTIN B
SALINIPOSTIN C
SALINIPOSTIN D
SALINIPOSTIN E
SALINIPOSTIN F
SALINIPOSTIN G
SALINIPOSTIN H
SALINIPOSTIN K
SALINOSPORAMIDE B
SALINOSPORAMIDE C
SALINOSPORAMIDE D
SALINOSPORAMIDE E
SALINOSPORAMIDE F
SALINOSPORAMIDE G
SALINOSPORAMIDE H
TIRANDALYDIGIN
UNCLASSIFIED DRUG
ACTINOBACTERIA
ANTIVIRAL ACTIVITY
ARTICLE
BINDING AFFINITY
BIOAVAILABILITY
BLOOD BRAIN BARRIER
COMPUTER MODEL
CONTROLLED STUDY
COVALENT BOND
CRYSTAL STRUCTURE
DYSPNEA
HYDROGEN BOND
HYDROPHOBICITY
IMMUNE RESPONSE
MOLECULAR DOCKING
MOLECULAR DYNAMICS
MUCORMYCOSIS
NONHUMAN
PHARMACOKINETIC PARAMETERS
SALINISPORA
SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2
SIMULATION
THREE-DIMENSIONAL IMAGING
TOXICITY TESTING
TWO-DIMENSIONAL IMAGING
X RAY DIFFRACTION
 
Описание Among the oldest marine species on the planet, the genus Salinispora is often encountered inhabiting sediments and other marine creatures in tropical and subtropical marine settings. This bacterial genus produces a plethora of natural products. The purpose of this study was to examine the potential for salinispora-based natural products (NPs) to combat the SARS-CoV-2 virus. The RCSB PDB was used to obtain the crystal structures of proteins 3CLpro and PLpro. All 125 NPs were obtained from online databases. Using Autodock Vina software v1.2.0 the molecular docking process was carried out after the proteins and ligands were prepared. Assessments of binding affinities and interacting amino acids were rigorously examined prior to MD simulations. The docking experiments revealed 35 NPs in total for both 3CLpro and PLpro, with high docking scores ranging from −8.0 kcal/mol to −9.0 kcal/mol. However, a thorough binding residue analyses of all docked complexes filtered nine NPs showing strong interactions with HIS: 41 and CYS: 145 of 3CLpro. Whereas, for PLpro, merely six NPs presented good interactions with residues CYS: 111, HIS: 272, and ASP: 286. Further research was conducted on residue–residue and ligand–residue interactions in both the filtered docked complexes and the Apo-protein structures using the Protein Contacts Atlas website. All complexes were found to be stable in CABS-flex 2.0 MD simulations conducted at various time frames (50, 125, 500, and 1000 cycles). In conclusion, salinaphthoquinone B appears to be the most promising metabolite, based on favorable amino acid interactions forming stable confirmations towards 3CLpro and PLpro enzymes, acting as a dual inhibitor. © 2023 by the authors.
Ministry of Science and Higher Education of the Russian Federation: 075-15-2022-1118
O.P. and G.V.Z. are thankful to the Ministry of Science and Education of RF (Agreement # 075-15-2022-1118 dated 29 June 2022) for funding.
 
Дата 2024-04-05T16:38:35Z
2024-04-05T16:38:35Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Pokharkar, O, Zyryanov, G & Tsurkan, M 2023, 'Natural Products from Marine Actinomycete Genus Salinispora Might Inhibit 3CLpro and PLpro Proteins of SARS-CoV-2: An In Silico Evidence', Microbiology Research, Том. 14, № 4, стр. 1907-1941. https://doi.org/10.3390/microbiolres14040130
Pokharkar, O., Zyryanov, G., & Tsurkan, M. (2023). Natural Products from Marine Actinomycete Genus Salinispora Might Inhibit 3CLpro and PLpro Proteins of SARS-CoV-2: An In Silico Evidence. Microbiology Research, 14(4), 1907-1941. https://doi.org/10.3390/microbiolres14040130
2036-7473
Final
All Open Access, Gold
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180651227&doi=10.3390%2fmicrobiolres14040130&partnerID=40&md5=de82556cb5df0f0ea91eff8ff9536e0d
https://www.mdpi.com/2036-7481/14/4/130/pdf?version=1700042435
http://elar.urfu.ru/handle/10995/131079
10.3390/microbiolres14040130
85180651227
001132291400001
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель Multidisciplinary Digital Publishing Institute (MDPI)
 
Источник Microbiology Research
Microbiology Research