Просмотреть запись

Benchmarking a boson sampler with Hamming nets

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Benchmarking a boson sampler with Hamming nets
 
Автор Iakovlev, I. A.
Sotnikov, O. M.
Dyakonov, I. V.
Kiktenko, E. O.
Fedorov, A. K.
Straupe, S. S.
Mazurenko, V. V.
 
Тематика MULTIPHOTON PROCESSES
PROBABILITY DISTRIBUTIONS
QUANTUM OPTICS
COMPLEX QUANTUM SYSTEMS
CONDITION
EXPERIMENTAL CONDITIONS
FURTHER DEVELOPMENT
PROBABILITY: DISTRIBUTIONS
PROPERTY
QUANTUM DEVICE
QUANTUM STATE
SAMPLING DEVICES
SPECIFIC PROPERTIES
BOSONS
 
Описание Analyzing the properties of complex quantum systems is crucial for further development of quantum devices, yet this task is typically challenging and demanding with respect to the required amount of measurements. Special attention to this problem appears within the context of characterizing outcomes of noisy intermediate-scale quantum devices, which produce quantum states with specific properties so that it is expected to be hard to simulate such states using classical resources. In this work, we address the problem of characterization of a boson sampling device, which uses the interference of input photons to produce samples of nontrivial probability distributions that at certain condition are hard to obtain classically. For realistic experimental conditions the problem is to probe multiphoton interference with a limited number of the measurement outcomes without collisions and repetitions. By constructing networks on the measurement outcomes, we demonstrate the possibility to discriminate between regimes of indistinguishable and distinguishable bosons by quantifying the structures of the corresponding networks. Based on this, we propose a machine-learning-based protocol to benchmark a boson sampler with unknown scattering matrix. Notably, the protocol works in the most challenging regimes of having a very limited number of bitstrings without collisions and repetitions. As we expect, our framework can be directly applied for characterizing boson sampling devices that are currently available in experiments. © 2023 American Physical Society.
Russian Science Foundation, RSF: 19-71-10092
This work was supported by the Russian Roadmap on Quantum Computing (Contract No. 868-1.3-15/15-2021, October 5, 2021). The work of AKF is also supported by the RSF Grant No. 19-71-10092 (analysis of certain aspects of machine learning applications).
 
Дата 2024-04-05T16:38:49Z
2024-04-05T16:38:49Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/submittedVersion
 
Идентификатор Iakovlev, I, Sotnikov, O, Dyakonov, IV, Kiktenko, EO, Fedorov, AK, Straupe, SS & Mazurenko, V 2023, 'Benchmarking a boson sampler with Hamming nets', Physical Review A, Том. 108, № 6, 062420. https://doi.org/10.1103/PhysRevA.108.062420
Iakovlev, I., Sotnikov, O., Dyakonov, I. V., Kiktenko, E. O., Fedorov, A. K., Straupe, S. S., & Mazurenko, V. (2023). Benchmarking a boson sampler with Hamming nets. Physical Review A, 108(6), [062420]. https://doi.org/10.1103/PhysRevA.108.062420
2469-9926
Final
All Open Access, Green
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181159489&doi=10.1103%2fPhysRevA.108.062420&partnerID=40&md5=f1d92c4b7782213c473bc42a4c15f2ee
https://arxiv.org/pdf/2305.10946
http://elar.urfu.ru/handle/10995/131098
10.1103/PhysRevA.108.062420
85181159489
 
Язык en
 
Связанные ресурсы info:eu-repo/grantAgreement/RSF//19-71-10092
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель American Physical Society
 
Источник Physical Review A
Physical Review A