Просмотреть запись

Asymptotic expansion of the error of the numerical method for solving wave equation with functional delay

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Asymptotic expansion of the error of the numerical method for solving wave equation with functional delay
 
Автор Pimenov, V. G.
Tashirova, E. E.
 
Тематика FUNCTIONAL DELAY
NUMERICAL METHOD WITH WEIGHTS
ORDER OF CONVERGENCE
PIECEWISE CUBIC INTERPOLATION
RICHARDSON METHOD
WAVE EQUATION
 
Описание A wave equation with functional delay is considered. The problem is discretized. Constructions of the difference method with weights with piecewise linear interpolation are given. A basic method with weights with piecewise cubic interpolation is constructed. The order of the residual is studied without interpolation of the basic method, and the expansion coefficients of the residual with respect to time-steps and space-steps are written out. It is proved that the weighted method with piecewise cubic interpolation converges with order 2 in the energy norm. An equation is written for the main term of the asymptotic expansion of the global error of the basic method. Under certain assumptions, the validity of the application of the Richardson extrapolation procedure is substantiated, and the corresponding numerical method is constructed, that has the fourth order of convergence with respect to time-steps and space-steps. The validity of Runge’s formulas for practical estimation of the error is proved. The results of numerical experiments on a test example are presented. © 2024 Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. All rights reserved.
Russian Science Foundation, RSF: 22–21–00075
Funding. The study was supported by the Russian Science Foundation, project no. 22–21–00075.
 
Дата 2024-04-05T16:39:14Z
2024-04-05T16:39:14Z
2023
 
Тип Article
Journal article (info:eu-repo/semantics/article)
|info:eu-repo/semantics/publishedVersion
 
Идентификатор Пименов, ВГ & Таширова, ЕЕ 2023, 'АСИМПТОТИЧЕСКОЕ РАЗЛОЖЕНИЕ ПОГРЕШНОСТИ ЧИСЛЕННОГО МЕТОДА ДЛЯ РЕШЕНИЯ ВОЛНОВОГО УРАВНЕНИЯ С ФУНКЦИОНАЛЬНЫМ ЗАПАЗДЫВАНИЕМ', Известия Института математики и информатики Удмуртского государственного университета, Том. 62, стр. 71-86. https://doi.org/10.35634/2226-3594-2023-62-06
Пименов, В. Г., & Таширова, Е. Е. (2023). АСИМПТОТИЧЕСКОЕ РАЗЛОЖЕНИЕ ПОГРЕШНОСТИ ЧИСЛЕННОГО МЕТОДА ДЛЯ РЕШЕНИЯ ВОЛНОВОГО УРАВНЕНИЯ С ФУНКЦИОНАЛЬНЫМ ЗАПАЗДЫВАНИЕМ. Известия Института математики и информатики Удмуртского государственного университета, 62, 71-86. https://doi.org/10.35634/2226-3594-2023-62-06
2226-3594
Final
All Open Access, Bronze
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183668557&doi=10.35634%2f2226-3594-2023-62-06&partnerID=40&md5=5026ae3faf58b5c87af626380a8e55a3
https://www.mathnet.ru/php/getFT.phtml?jrnid=iimi&paperid=454&what=fullt&option_lang=eng
http://elar.urfu.ru/handle/10995/131133
54938926
10.35634/2226-3594-2023-62-06
85183668557
001163723700006
 
Язык ru
 
Связанные ресурсы info:eu-repo/grantAgreement/RSF//22-21-00075
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель Udmurt State University
 
Источник Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta