Просмотреть запись

Computational anatomy atlas using multilayer perceptron with Lipschitz regularization

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Computational anatomy atlas using multilayer perceptron with Lipschitz regularization
 
Автор Ushenin, K.
Dordiuk, V.
Dzhigil, M.
 
Тематика COMPUTATIONAL ANATOMY ATLAS
IMPLICIT REPRESENTATION
LIPSCHITZ CONTINUITY
LIPSCHITZ REGULARIZATION
ML-ENGINEERING
COMPUTER VISION
MULTILAYER NEURAL NETWORKS
ATLAS GENERATION
COMPUTATIONAL ANATOMY
COMPUTATIONAL ANATOMY ATLAS
IMPLICIT REPRESENTATION
LIPSCHITZ
LIPSCHITZ CONTINUITY
LIPSCHITZ REGULARIZATION
ML-ENGINEERING
MULTILAYERS PERCEPTRONS
REGULARISATION
MULTILAYERS
 
Описание A computational anatomy atlas is a set of internal organ geometries. It is based on data of real patients and complemented with virtual cases by using a some numerical approach. Atlases are in demand in computational physiology, especially in cardiological and neurophysiological applications. Usually, atlas generation uses explicit object representation, such as voxel models or surface meshes. In this paper, we propose a method of atlas generation using an implicit representation of 3D objects. Our approach has two key stages. The first stage converts voxel models of segmented organs to implicit form using the usual multilayer perceptron. This stage smooths the model and reduces memory consumption. The second stage uses a multilayer perceptron with Lipschitz regularization. This neural network provides a smooth transition between implicitly defined 3D geometries. Our work shows examples of models of the left and right human ventricles. All code and data for this work are open. © 2022 IEEE.
Russian Science Foundation, RSF, (RSF 22-21-00930)
This work has been supported by the grants the Russian Science Foundation, RSF 22-21-00930.
 
Дата 2024-04-08T11:05:23Z
2024-04-08T11:05:23Z
2022
 
Тип Conference paper
Conference object (info:eu-repo/semantics/conferenceObject)
info:eu-repo/semantics/submittedVersion
 
Идентификатор Ushenin, K, Dordiuk, V & Dzhigil, M 2022, Computational anatomy atlas using multilayer perceptron with Lipschitz regularization. в SIBIRCON 2022 - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings. SIBIRCON - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings, Institute of Electrical and Electronics Engineers Inc., стр. 680-683, 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), 11/11/2022. https://doi.org/10.1109/SIBIRCON56155.2022.10016940
Ushenin, K., Dordiuk, V., & Dzhigil, M. (2022). Computational anatomy atlas using multilayer perceptron with Lipschitz regularization. в SIBIRCON 2022 - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings (стр. 680-683). (SIBIRCON - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/SIBIRCON56155.2022.10016940
978-166546480-2
Final
All Open Access; Green Open Access
https://arxiv.org/pdf/2211.03122
https://arxiv.org/pdf/2211.03122
http://elar.urfu.ru/handle/10995/131168
10.1109/SIBIRCON56155.2022.10016940
85147528131
 
Язык en
 
Связанные ресурсы info:eu-repo/grantAgreement/RSF//22-21-00930
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель Institute of Electrical and Electronics Engineers Inc.
 
Источник 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON)
2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2022