Stationary Gas Dynamics and Heat Transfer of Turbulent Flows in Straight Pipes at Different Turbulence Intensity
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Stationary Gas Dynamics and Heat Transfer of Turbulent Flows in Straight Pipes at Different Turbulence Intensity
|
|
Автор |
Plotnikov, L.
Grigoriev, N. Osipov, L. Slednev, V. Shurupov, V. |
|
Тематика |
AERODYNAMICS
HEAT ENGINES HEAT TRANSFER LONG TUBE TRANSVERSE PROFILING TURBULENCE INTENSITY AIR ANEMOMETERS ENVIRONMENTAL MANAGEMENT GAS PLANTS HEAT EXCHANGERS HEAT TRANSFER THERMOCOUPLES TURBULENCE AIR FLOW ENVIRONMENTAL PERFORMANCE EXCHANGE BEHAVIOR HEAT-EXCHANGE LOCAL HEAT TRANSFER LONG TUBES STRAIGHT PIPE TECHNICAL EQUIPMENTS TRANSVERSE PROFILING TURBULENCE INTENSITY GAS DYNAMICS |
|
Описание |
The gas-dynamic and heat-exchange behaviours of air flows in gas-dynamic systems have a significant impact on the efficiency and environmental performance of most technical equipment (heat engines, power plants, heat exchangers, etc.). Therefore, it is a relevant task to obtain reliable experimental data and physical laws on the influence of cross-sectional shape and initial turbulence intensity on gas dynamics and the level of heat transfer. In this study, data were experimentally obtained on the instantaneous values of the local velocity and local heat transfer coefficients of stationary air flows in straight pipes with circular, square, and triangular cross-sections at different initial values of the turbulence intensity. The measurements were carried out with a constant temperature hot-wire anemometer, thermocouples, and pressure sensors. Based on the research results, data on the turbulence intensity and averaged local heat transfer along the length of pipes with different cross-sections were summarised. It has been established that turbulence intensity in a square pipe is up to 40% higher than in a round channel; in a triangular channel, on the contrary, it is up to 28% lower. After the air flow’s initial turbulence, the relaxation of the flow in square and triangular pipes occurs faster than in a round channel. It is found that the initial intensity of turbulence leads to an increase in the averaged local heat transfer, which is typical of all investigated pipe configurations and initial conditions. © 2022 by the authors.
Ministry of Education and Science of the Russian Federation, Minobrnauka The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged. |
|
Дата |
2024-04-08T11:05:33Z
2024-04-08T11:05:33Z 2022 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) Published version (info:eu-repo/semantics/publishedVersion) |
|
Идентификатор |
Plotnikov, L, Grigoriev, N, Osipov, L, Slednev, V & Shurupov, V 2022, 'Stationary Gas Dynamics and Heat Transfer of Turbulent Flows in Straight Pipes at Different Turbulence Intensity', Energies, Том. 15, № 19, 7250. https://doi.org/10.3390/en15197250
Plotnikov, L., Grigoriev, N., Osipov, L., Slednev, V., & Shurupov, V. (2022). Stationary Gas Dynamics and Heat Transfer of Turbulent Flows in Straight Pipes at Different Turbulence Intensity. Energies, 15(19), [7250]. https://doi.org/10.3390/en15197250 1996-1073 Final All Open Access; Gold Open Access https://www.mdpi.com/1996-1073/15/19/7250/pdf?version=1665214927 https://www.mdpi.com/1996-1073/15/19/7250/pdf?version=1665214927 http://elar.urfu.ru/handle/10995/131172 10.3390/en15197250 85139954799 000866781400001 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by https://creativecommons.org/licenses/by/4.0/ |
|
Формат |
application/pdf
|
|
Издатель |
MDPI
|
|
Источник |
Energies
Energies |
|