Просмотреть запись

APPLE LEAF DISEASE CLASSIFICATION USING IMAGE DATASET: A MULTILAYER CONVOLUTIONAL NEURAL NETWORK APPROACH

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие APPLE LEAF DISEASE CLASSIFICATION USING IMAGE DATASET: A MULTILAYER CONVOLUTIONAL NEURAL NETWORK APPROACH
 
Автор Hashan, A. M.
Ul, Islam, R. M. R.
Avinash, K.
 
Тематика APPLE LEAF DISEASE
ARTIFICIAL INTELLIGENCE
CLASSIFICATION
IMAGE PROCESSING
MULTILAYER CONVOLUTIONAL NEURAL NETWORK
 
Описание Agriculture is one of the prime sources of economic growth in Russia; the global apple production in 2019 was 87 million tons. Apple leaf diseases are the main reason for annual decreases in apple production, which creates huge economic losses. Automated methods for detecting apple leaf diseases are beneficial in reducing the laborious work of monitoring apple gardens and early detection of disease symptoms. This article proposes a multilayer convolutional neural network (MCNN), which is able to classify apple leaves into one of the following categories: apple scab, black rot, and apple cedar rust diseases using a newly created dataset. In this method, we used affine transformation and perspective transformation techniques to increase the size of the dataset. After that, OpenCV crop and histogram equalization method-based preprocessing operations were used to improve the proposed image dataset. The experimental results show that the system achieves 98.40% training accuracy and 98.47% validation accuracy on the proposed image dataset with a smaller number of training parameters. The results envisage a higher classification accuracy of the proposed MCNN model when compared with the other well-known state-of-the-art approaches. This proposed model can be used to detect and classify other types of apple diseases from different image datasets. © Informatics and Automation.All rights reserved.
 
Дата 2024-04-08T11:05:44Z
2024-04-08T11:05:44Z
2022
 
Тип Article
Journal article (info:eu-repo/semantics/article)
Published version (info:eu-repo/semantics/publishedVersion)
 
Идентификатор Antor, MH, Md Rakib, UIR & Kumar, A 2022, 'Apple Leaf Disease Classification Using Image Dataset: a Multilayer Convolutional Neural Network Approach', Информатика и автоматизация, Том. 21, № 4, стр. 710-728. https://doi.org/10.15622/ia.21.4.3
Antor, M. H., Md Rakib, U. I. R., & Kumar, A. (2022). Apple Leaf Disease Classification Using Image Dataset: a Multilayer Convolutional Neural Network Approach. Информатика и автоматизация, 21(4), 710-728. https://doi.org/10.15622/ia.21.4.3
2713-3192
Final
All Open Access; Gold Open Access
http://ia.spcras.ru/index.php/sp/article/download/15314/15103
http://ia.spcras.ru/index.php/sp/article/download/15314/15103
http://elar.urfu.ru/handle/10995/131210
49089679
10.15622/ia.21.4.3
85135789388
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель St. Petersburg Federal Research Center of the Russian Academy of Sciences
 
Источник Информатика и автоматизация
Informatics and Automation