Paramagnetic Defects and Thermoluminescence in Irradiated Nanostructured Monoclinic Zirconium Dioxide
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Paramagnetic Defects and Thermoluminescence in Irradiated Nanostructured Monoclinic Zirconium Dioxide
|
|
Автор |
Ananchenko, D. V.
Nikiforov, S. V. Sobyanin, K. V. Konev, S. F. Dauletbekova, A. K. Akhmetova-Abdik, G. Akilbekov, A. T. Popov, A. I. |
|
Тематика |
ELECTRON IRRADIATION
F+ CENTERS ION IRRADIATION PARAMAGNETIC DEFECTS ZIRCONIUM DIOXIDE DEFECTS ELECTRON SPIN RESONANCE SPECTROSCOPY ELECTRONS ION BEAMS ION BOMBARDMENT IONS PARAMAGNETIC RESONANCE PARAMAGNETISM THERMOLUMINESCENCE ZIRCONIA ENERGY ESR SPECTRUM F-CENTERS F-CENTRES IONS IRRADIATION MONOCLINICS NANO-STRUCTURED PARAMAGNETIC DEFECTS TEMPERATURE RANGE THERMAL DESTRUCTION ELECTRON IRRADIATION |
|
Описание |
The ESR spectra of nanostructured samples of monoclinic ZrO2 irradiated by electrons with energies of 130 keV, 10 MeV, and by a beam of Xe ions (220 MeV) have been studied. It has been established that irradiation of samples with electrons (10 MeV) and ions leads to the formation of radiation-induced F+ centers in them. Thermal destruction of these centers is observed in the temperature range of 375–550 K for electron-irradiated and 500–700 K for ion-irradiated samples. It is shown that the decrease in the concentration of F+ centers is associated with the emptying of traps responsible for thermoluminescence (TL) peaks in the specified temperature range. In the samples irradiated with an ion beam, previously unidentified paramagnetic centers with g = 1.963 and 1.986 were found, the formation of which is likely to involve Zr3+ ions and oxygen vacancies. Thermal destruction of these centers occurs in the temperature range from 500 to 873 K. © 2022 by the authors.
European Union Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2, (739508) Ministry of Education and Science of the Republic of Kazakhstan, (AP09260057) Latvijas Universitate Institute of Solid State Physics, Chinese Academy of Sciences, ISSP The work was carried out under the grant of the Ministry of Education and Science of the Republic of Kazakhstan AP09260057, “Luminescence and radiation resistance of synthesized under different conditions micro- and nanostructured compacts and ceramics based on ZrO2”. The research was partly (A.I.P.) performed at the Center of Excellence of the Institute of Solid State Physics, University of Latvia, supported through European Union Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2, under grant agreement No. 739508, project CAMART2. |
|
Дата |
2024-04-08T11:06:06Z
2024-04-08T11:06:06Z 2022 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) Published version (info:eu-repo/semantics/publishedVersion) |
|
Идентификатор |
Ananchenko, DV, Nikiforov, SV, Sobyanin, KV, Konev, SF, Dauletbekova, AK, Akhmetova-Abdik, G, Akilbekov, AT & Popov, AI 2022, 'Paramagnetic Defects and Thermoluminescence in Irradiated Nanostructured Monoclinic Zirconium Dioxide', Materials, Том. 15, № 23, 8624. https://doi.org/10.3390/ma15238624
Ananchenko, D. V., Nikiforov, S. V., Sobyanin, K. V., Konev, S. F., Dauletbekova, A. K., Akhmetova-Abdik, G., Akilbekov, A. T., & Popov, A. I. (2022). Paramagnetic Defects and Thermoluminescence in Irradiated Nanostructured Monoclinic Zirconium Dioxide. Materials, 15(23), [8624]. https://doi.org/10.3390/ma15238624 1996-1944 Final All Open Access; Gold Open Access; Green Open Access https://www.mdpi.com/1996-1944/15/23/8624/pdf?version=1670579523 https://www.mdpi.com/1996-1944/15/23/8624/pdf?version=1670579523 http://elar.urfu.ru/handle/10995/131277 10.3390/ma15238624 85143753642 000897424700001 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by https://creativecommons.org/licenses/by/4.0/ |
|
Формат |
application/pdf
|
|
Издатель |
MDPI
|
|
Источник |
Materials
Materials |
|