A Novel Nanocomposite Based on Triazine Based Covalent Organic Polymer Blended with Porous g-C3N4 for Photo Catalytic Dye Degradation of Rose Bengal and Fast Green
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
A Novel Nanocomposite Based on Triazine Based Covalent Organic Polymer Blended with Porous g-C3N4 for Photo Catalytic Dye Degradation of Rose Bengal and Fast Green
|
|
Автор |
Venkatesh, N.
Murugadoss, G. Mohamed, A. A. A. Kumar, M. R. Peera, S. G. Sakthivel, P. |
|
Тематика |
GRAPHITIC CARBON NITRIDE
METAL FREE NANO COMPOSITE ORGANIC POROUS POLYMER PHOTOCATALYTIC TOXIC DYE VISIBLE SUNLIGHT ANTHRAQUINONES COLORING AGENTS ENVIRONMENTAL POLLUTANTS NANOCOMPOSITES POLYMERS POROSITY ROSE BENGAL SPECTROSCOPY, FOURIER TRANSFORM INFRARED TRIAZINES ANTHRAQUINONE DERIVATIVE COLORING AGENT GRAPHITIC CARBON NITRIDE MALACHITE GREEN NANOCOMPOSITE POLYMER ROSE BENGAL TRIAZINE DERIVATIVE CHEMISTRY INFRARED SPECTROSCOPY POLLUTANT POROSITY |
|
Описание |
Metal free visible light active photocatalysts of covalent organic polymers (COPs) and polymeric graphitic carbon nitride (g-C3N4) are interesting porous catalysts that have enormous potential for application in organic pollutant degradation. Imine condensation for COPs, and thermal condensation for g-C3N4 were used to produce the catalysts. FT-IR, Raman, NMR, UV-Vis Spectroscopy, X-ray diffraction, and scanning electron microscopy studies were used to investigate the structural, optical, and morphological features of the metal free catalysts. We have constructed COPs with a π-electron deficient (Lewis acidic) triazine core and π -electron rich (Lewis basic) naphthalene and anthraquinone rings coupled by -O and -N donors in this study. Furthermore, the prepared Bulk-g-C3N4 (B-GCN) was converted to porous g-C3N4 (P-GCN) using a chemical oxidation process, and the generated P-GCN was efficiently mixed with the COP to create a novel nanocomposite for photocatalytic application. Using the anthraquinone-based COP and P-GCN (1:1 ratio, PA-GCN) catalyst, the highest photodegradation efficiencies for the polymeric graphitic carbon nitride of 88.2% and 82.3% were achieved using the Fast green (FG) and Rose bengal (RB) dyes, respectively. The rate constant values of 0.032 and 0.024/min were determined for FG and RB degradation, respectively. Higher activity may be related to the incorporation of COP and PA-GCN, which act significantly well in higher visible light absorption, have superior reactive oxygen generation (ROS), and demonstrate an excellent pollutant–catalyst interaction. © 2022 by the authors.
TANSCHE RESEARCH, (FILE NO RGP/2019-20/BU/HECP-0065) Bharathiar University, (C2/7739/2019) Research grants from funding agencies of TANSCHE RESEARCH GRANT PROJECT(TANSCHE-RGP) (FILE NO RGP/2019-20/BU/HECP-0065), Tamil Nadu, India. One of the authors NV, would like to thank Bharathiar University for the University Research Fellowship (URF) (Ref. No: C2/7739/2019). |
|
Дата |
2024-04-08T11:06:37Z
2024-04-08T11:06:37Z 2022 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) Published version (info:eu-repo/semantics/publishedVersion) |
|
Идентификатор |
Venkatesh, N, Murugadoss, G, Mohamed, AAA, Kumar, MR, Peera, SG & Sakthivel, P 2022, 'A Novel Nanocomposite Based on Triazine Based Covalent Organic Polymer Blended with Porous g-C3N4 for Photo Catalytic Dye Degradation of Rose Bengal and Fast Green', Molecules, Том. 27, № 21, 7168. https://doi.org/10.3390/molecules27217168
Venkatesh, N., Murugadoss, G., Mohamed, A. A. A., Kumar, M. R., Peera, S. G., & Sakthivel, P. (2022). A Novel Nanocomposite Based on Triazine Based Covalent Organic Polymer Blended with Porous g-C3N4 for Photo Catalytic Dye Degradation of Rose Bengal and Fast Green. Molecules, 27(21), [7168]. https://doi.org/10.3390/molecules27217168 1420-3049 Final All Open Access; Gold Open Access; Green Open Access https://www.mdpi.com/1420-3049/27/21/7168/pdf?version=1666521963 https://www.mdpi.com/1420-3049/27/21/7168/pdf?version=1666521963 http://elar.urfu.ru/handle/10995/131325 10.3390/molecules27217168 85141641089 000881611100001 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by https://creativecommons.org/licenses/by/4.0/ |
|
Формат |
application/pdf
|
|
Издатель |
MDPI
|
|
Источник |
Molecules
Molecules |
|