Magnetostriction in elastomers with mixtures of magnetically hard and soft microparticles: Effects of nonlinear magnetization and matrix rigidity
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Magnetostriction in elastomers with mixtures of magnetically hard and soft microparticles: Effects of nonlinear magnetization and matrix rigidity
|
|
Автор |
Stolbov, O. V.
Sánchez, P. A. Kantorovich, S. S. Raikher, Y. L. |
|
Тематика |
MAGNETICALLY HARD MICROPARTICLES
MAGNETOACTIVE ELASTOMER MAGNETOSTRICTION EFFECT |
|
Описание |
In this contribution, a magnetoactive elastomer (MAE) of mixed content, i.e., a polymer matrix filled with a mixture of magnetically soft and magnetically hard spherical particles, is considered. The object we focus on is an elementary unit of this composite, for which we take a set consisting of a permanent spherical micromagnet surrounded by an elastomer layer filled with magnetically soft microparticles. We present a comparative treatment of this unit from two essentially different viewpoints. The first one is a coarse-grained molecular dynamics simulation model, which presents the composite as a bead-spring assembly and is able to deliver information of all the microstructural changes of the assembly. The second approach is entirely based on the continuum magnetomechanical description of the system, whose direct yield is the macroscopic field-induced response of the MAE to external field, as this model ignores all the microstructural details of the magnetization process. We find that, differing in certain details, both frameworks are coherent in predicting that a unit comprising magnetically soft and hard particles may display a nontrivial reentrant (prolate/oblate/prolate) axial deformation under variation of the applied field strength. The flexibility of the proposed combination of the two complementary frameworks enables us to look deeper into the manifestation of the magnetic response: with respect to the magnetically soft particles, we compare the linear regime of magnetization to that with saturation, which we describe by the Fröhlich-Kennelly approximation; with respect to the polymer matrix, we analyze the dependence of the reentrant deformation on its rigidity. © 2020 Oleg V. Stolbov et al., published by De Gruyter, Berlin/Boston.
Deutsche Forschungsgemeinschaft, DFG, (OD 18/24-1) Government Council on Grants, Russian Federation Funding text 1: P.A.S. and S.S.K. acknowledge support by the DFG grant OD 18/24-1 and by the Act 211 of the Government of the Russian Federation, contract No. 02.A03.21.0006. Computer simulations were carried out at the Vienna Scientific Cluster. Funding text 2: Research funding: This research was funded by DFG grant OD 18/24-1 and by the Act 211 of the Government of the Russian Federation, contract No. 02.A03.21.0006. |
|
Дата |
2024-04-08T11:07:05Z
2024-04-08T11:07:05Z 2022 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) Published version (info:eu-repo/semantics/publishedVersion) |
|
Идентификатор |
Stolbov, OV, Sánchez, PA, Kantorovich, SS & Raikher, YL 2022, 'Magnetostriction in elastomers with mixtures of magnetically hard and soft microparticles: effects of nonlinear magnetization and matrix rigidity', Physical Sciences Reviews, Том. 7, № 10, стр. 1187-1208. https://doi.org/10.1515/psr-2020-0009
Stolbov, O. V., Sánchez, P. A., Kantorovich, S. S., & Raikher, Y. L. (2022). Magnetostriction in elastomers with mixtures of magnetically hard and soft microparticles: effects of nonlinear magnetization and matrix rigidity. Physical Sciences Reviews, 7(10), 1187-1208. https://doi.org/10.1515/psr-2020-0009 2365-659X Final All Open Access; Green Open Access; Hybrid Gold Open Access https://www.degruyter.com/document/doi/10.1515/psr-2020-0009/pdf https://www.degruyter.com/document/doi/10.1515/psr-2020-0009/pdf http://elar.urfu.ru/handle/10995/131400 10.1515/psr-2020-0009 85097512287 000870949000006 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by-nc-nd https://creativecommons.org/licenses/by-nc-nd/4.0/ |
|
Формат |
application/pdf
|
|
Издатель |
De Gruyter Open Ltd
|
|
Источник |
Physical Sciences Reviews
Physical Sciences Reviews |
|