Effect of Piezoelectric BaTiO3 Filler on Mechanical and Magnetoelectric Properties of Zn0.25Co0.75Fe2O4/PVDF-TrFE Composites
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Effect of Piezoelectric BaTiO3 Filler on Mechanical and Magnetoelectric Properties of Zn0.25Co0.75Fe2O4/PVDF-TrFE Composites
|
|
Автор |
Sobolev, K.
Kolesnikova, V. Omelyanchik, A. Alekhina, Y. Antipova, V. Makarova, L. Peddis, D. Raikher, Y. L. Levada, K. Amirov, A. Rodionova, V. |
|
Тематика |
MAGNETOELECTRIC EFFECT
MULTIFERROICS POLYMER COMPOSITES PVDF-TRFE SCAFFOLD-AIDED BONE REPAIR BARIUM TITANATE BIOCOMPATIBILITY FILLED POLYMERS IRON COMPOUNDS MAGNETISM SCANNING PROBE MICROSCOPY STEM CELLS ZINC COMPOUNDS BATIO 3 BONE REPAIR MAGNETOELECTRIC PROPERTIES MECHANICAL MULTIFERROICS PIEZOELECTRIC POLYMER BASED POLYMER COMPOSITE PVDF-TRFE SCAFFOLD-AIDED BONE REPAIR FILLERS |
|
Описание |
Polymer-based multiferroics, combining magnetic and piezoelectric properties, are studied experimentally—from synthesis to multi-parameter characterization—in view of their prospects for fabricating biocompatible scaffolds. The main advantage of these systems is facile generation of mechanical deformations and electric signals in response to external magnetic fields. Herein, we address the composites based on PVDF-TrFE polymer matrices filled with a combination of piezoelectric (BaTiO3, BTO) and/or ferrimagnetic (Zn0.25Co0.75Fe2O4, ZCFO) particles. It is shown that the presence of BTO micron-size particles favors stripe-type structuring of the ZCFO filler and enhances the magnetoelectric response of the sample up to 18.6 mV/(cm∙Oe). Besides that, the admixing of BTO particles is crucial because the mechanical properties of the composite filled with only ZCFO is much less efficient in transforming magnetic excitations into the mechanical and electric responses. Attention is focused on the local surfacial mechanical properties since those, to a great extent, determine the fate of stem cells cultivated on these surfaces. The nano-indentation tests are accomplished with the aid of scanning probe microscopy technique. With their proven suitable mechanical properties, a high level of magnetoelectric conversion and also biocompatibility, the composites of the considered type are enticing as the materials for multiferroic-based polymer scaffolds. © 2022 by the authors.
Russian Federal Academic Leadership Russian Science Foundation, RSF, (21-72-30032) Funding text 1: The study was funded by the Russian Science Foundation under Project No. 21-72-30032. Funding text 2: Authors Amirov A.A. and Levada K.V. acknowledge support from the Russian Federal Academic Leadership Program Priority 2030 at the Immanuel Kant Baltic Federal University. The authors are grateful to Larisa Reznichenko from Southern Federal University (Rostov-on-Don, Russia) for providing BTO particles, to Maxim Silibin from the Institute of Advanced Materials and Technologies, National Research University of Electronic Technology “MIET” (Moscow, Russia) for providing PVDF-TrFE powder, and to Vladimir Leitsin and Alexander Tovpinets from Immanuel Kant Baltic Federal University (Kaliningrad, Russia) for their contributions and help with XCT measurements and data evaluation. |
|
Дата |
2024-04-08T11:07:08Z
2024-04-08T11:07:08Z 2022 |
|
Тип |
Article
Journal article (info:eu-repo/semantics/article) Published version (info:eu-repo/semantics/publishedVersion) |
|
Идентификатор |
Sobolev, K, Kolesnikova, V, Omelyanchik, A, Alekhina, Y, Antipova, V, Makarova, L, Peddis, D, Raikher, YL, Levada, K, Amirov, A & Rodionova, V 2022, 'Effect of Piezoelectric BaTiO3 Filler on Mechanical and Magnetoelectric Properties of Zn0.25Co0.75Fe2O4/PVDF-TrFE Composites', Polymers, Том. 14, № 22, 4807. https://doi.org/10.3390/polym14224807
Sobolev, K., Kolesnikova, V., Omelyanchik, A., Alekhina, Y., Antipova, V., Makarova, L., Peddis, D., Raikher, Y. L., Levada, K., Amirov, A., & Rodionova, V. (2022). Effect of Piezoelectric BaTiO3 Filler on Mechanical and Magnetoelectric Properties of Zn0.25Co0.75Fe2O4/PVDF-TrFE Composites. Polymers, 14(22), [4807]. https://doi.org/10.3390/polym14224807 2073-4360 Final All Open Access; Gold Open Access; Green Open Access https://www.mdpi.com/2073-4360/14/22/4807/pdf?version=1669258772 https://www.mdpi.com/2073-4360/14/22/4807/pdf?version=1669258772 http://elar.urfu.ru/handle/10995/131409 10.3390/polym14224807 85142450202 000887682800001 |
|
Язык |
en
|
|
Связанные ресурсы |
info:eu-repo/grantAgreement/RSF//21-72-30032
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by https://creativecommons.org/licenses/by/4.0/ |
|
Формат |
application/pdf
|
|
Издатель |
MDPI
|
|
Источник |
Polymers
Polymers |
|