Просмотреть запись

The thresholding problem and variability in the EEG graph network parameters

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие The thresholding problem and variability in the EEG graph network parameters
 
Автор Adamovich, T.
Zakharov, I.
Tabueva, A.
Malykh, S.
 
Тематика BRAIN
BRAIN MAPPING
ELECTROENCEPHALOGRAPHY
BRAIN
BRAIN MAPPING
ELECTROENCEPHALOGRAPHY
PROCEDURES
 
Описание Graph thresholding is a frequently used practice of eliminating the weak connections in brain functional connectivity graphs. The main aim of the procedure is to delete the spurious connections in the data. However, the choice of the threshold is arbitrary, and the effect of the threshold choice is not fully understood. Here we present the description of the changes in the global measures of a functional connectivity graph depending on the different proportional thresholds based on the 146 resting-state EEG recordings. The dynamics is presented in five different synchronization measures (wPLI, ImCoh, Coherence, ciPLV, PPC) in sensors and source spaces. The analysis shows significant changes in the graph’s global connectivity measures as a function of the chosen threshold which may influence the outcome of the study. The choice of the threshold could lead to different study conclusions; thus it is necessary to improve the reasoning behind the choice of the different analytic options and consider the adoption of different analytic approaches. We also proposed some ways of improving the procedure of thresholding in functional connectivity research. © 2022, The Author(s).
 
Дата 2024-04-08T11:07:29Z
2024-04-08T11:07:29Z
2022
 
Тип Article
Journal article (info:eu-repo/semantics/article)
Published version (info:eu-repo/semantics/publishedVersion)
 
Идентификатор Adamovich, T, Zakharov, I, Tabueva, A & Malykh, S 2022, 'The thresholding problem and variability in the EEG graph network parameters', Scientific Reports, Том. 12, № 1, 18659. https://doi.org/10.1038/s41598-022-22079-2
Adamovich, T., Zakharov, I., Tabueva, A., & Malykh, S. (2022). The thresholding problem and variability in the EEG graph network parameters. Scientific Reports, 12(1), [18659]. https://doi.org/10.1038/s41598-022-22079-2
2045-2322
Final
All Open Access; Gold Open Access; Green Open Access
https://www.nature.com/articles/s41598-022-22079-2.pdf
https://www.nature.com/articles/s41598-022-22079-2.pdf
http://elar.urfu.ru/handle/10995/131469
10.1038/s41598-022-22079-2
85141185181
000879109400060
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель Nature Research
 
Источник Scientific Reports
Scientific Reports