Просмотреть запись

Solving Nonlinear Inverse Problems Based on the Regularized Modified Gauss–Newton Method

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Solving Nonlinear Inverse Problems Based on the Regularized Modified Gauss–Newton Method
 
Автор Vasin, V. V.
 
Тематика ILL-POSED PROBLEM
MODIFIED GAUSS–NEWTON METHOD
MODIFIED TIKHONOV METHOD
 
Описание Abstract: A nonlinear operator equation is investigated in the case when the Hadamard correctness conditions are violated. A two-stage method is proposed for constructing a stable method for solving the equation. It includes modified Tikhonov regularization and a modified iterative Gauss–Newton process for approximating the solution of the regularized equation. The convergence of the iterations and the strong Fejér property of the process are proved. An order optimal estimate for the error of the two-stage method is established in the class of sourcewise representable functions. © 2022, Pleiades Publishing, Ltd.
Russian Science Foundation, RSF, (18-11-00024-P)
This work was supported in part by the Russian Science Foundation, project no. 18-11-00024-P.
 
Дата 2024-04-08T11:08:08Z
2024-04-08T11:08:08Z
2022
 
Тип Article
Journal article (info:eu-repo/semantics/article)
Published version (info:eu-repo/semantics/publishedVersion)
 
Идентификатор Vasin, VV 2022, 'Solving Nonlinear Inverse Problems Based on the Regularized Modified Gauss–Newton Method', Doklady Mathematics, Том. 105, № 3, стр. 175-177. https://doi.org/10.1134/S1064562422030103
Vasin, V. V. (2022). Solving Nonlinear Inverse Problems Based on the Regularized Modified Gauss–Newton Method. Doklady Mathematics, 105(3), 175-177. https://doi.org/10.1134/S1064562422030103
1064-5624
Final
All Open Access; Hybrid Gold Open Access
https://link.springer.com/content/pdf/10.1134/S1064562422030103.pdf
https://link.springer.com/content/pdf/10.1134/S1064562422030103.pdf
http://elar.urfu.ru/handle/10995/131579
10.1134/S1064562422030103
85135464861
000836614500006
 
Язык en
 
Связанные ресурсы info:eu-repo/grantAgreement/RSF//18-11-00024
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
 
Формат application/pdf
 
Издатель Pleiades journals
 
Источник Doklady Mathematics
Doklady Mathematics