Просмотреть запись

Systems monitoring based on robust estimation of stochastic time series models

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Systems monitoring based on robust estimation of stochastic time series models
 
Автор Tyrsin, A. N.
Golovanov, O. A.
 
Тематика LEAST SQUARES APPROXIMATIONS
MONTE CARLO METHODS
PARAMETER ESTIMATION
STATISTICAL TESTS
STOCHASTIC SYSTEMS
TIME SERIES
CONDITION
DATA HETEROGENEITY
ERROR DISTRIBUTIONS
LOSS FUNCTIONS
ROBUST ESTIMATION
ROBUST PROCEDURES
STOCHASTIC DATA
STOCHASTIC TIME SERIES MODELS
SYSTEM MONITORING
TIMES SERIES MODELS
STOCHASTIC MODELS
 
Описание The problem of system monitoring under conditions of stochastic data heterogeneity based on time series models is considered. The stability of monitoring is proposed to be ensured through the use of convex-concave loss functions. An algorithm for estimating the variance of the main error distribution is proposed. This allows using robust procedures for estimating the parameters of stochastic time series models without a priori information about the variance value of the main error distribution. Using the Monte Carlo statistical test method, the estimates of the proposed robust methods are compared with the known methods of least squares, least modules, and Huber. It is shown that the introduced robust estimates of the parameters of stochastic models of time series win in accuracy and allow increasing the reliability of monitoring the state of systems. © Published under licence by IOP Publishing Ltd.
Russian Foundation for Basic Research, РФФИ, (20-41-660008)
The study was carried out with the financial support of the RFBR grant, project No. 20-41-660008.
 
Дата 2024-04-22T15:53:01Z
2024-04-22T15:53:01Z
2022
 
Тип Conference paper
Conference object (info:eu-repo/semantics/conferenceObject)
Published version (info:eu-repo/semantics/publishedVersion)
 
Идентификатор Tyrsin, AN & Golovanov, OA 2022, 'Systems monitoring based on robust estimation of stochastic time series models', Journal of Physics: Conference Series, Том. 2388, № 1, стр. 012074. https://doi.org/10.1088/1742-6596/2388/1/012074
Tyrsin, A. N., & Golovanov, O. A. (2022). Systems monitoring based on robust estimation of stochastic time series models. Journal of Physics: Conference Series, 2388(1), 012074. https://doi.org/10.1088/1742-6596/2388/1/012074
1742-6588
Final
All Open Access; Gold Open Access
https://iopscience.iop.org/article/10.1088/1742-6596/2388/1/012074/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/2388/1/012074/pdf
http://elar.urfu.ru/handle/10995/132383
10.1088/1742-6596/2388/1/012074
85145169031
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
 
Формат application/pdf
 
Издатель Institute of Physics
 
Источник Journal of Physics: Conference Series
Journal of Physics: Conference Series