Просмотреть запись

ON ESTIMATES OF M-TERM APPROXIMATIONS ON CLASSES OF FUNCTIONS WITH BOUNDED MIXED DERIVATIVE IN THE LORENTZ SPACE

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие ON ESTIMATES OF M-TERM APPROXIMATIONS ON CLASSES OF FUNCTIONS WITH BOUNDED MIXED DERIVATIVE IN THE LORENTZ SPACE
 
Автор Akishev, G.
Myrzagaliyeva, A.
 
Тематика BEST M-TERM APPROXIMATION
LORENTZ SPACE
MIXED DERIVATIVE
TRIGONOMETRIC POLYNOMIAL
 
Описание The paper considers spaces of periodic functions of several variables, namely, the Lorentz space Lq,τ(T m) , the class of functions with bounded mixed fractional derivative Wq,τr¯, 1 < q, τ< ∞, and studies the order of the best M-term approximation of a function f∈ Lp,τ(T m) by trigonometric polynomials. The article consists of the introduction, the main part, and the conclusion. In the introduction, we introduce basic concepts, definitions, and necessary statements for the proof of the main results. You can also find information about previous results on the topic. In the main part, we establish exact-order estimates for the best M-term approximations of functions of the class Wq,τ1r¯ in the norm of the space Lp,τ2(Tm) for various relations between the parameters p, q, τ1, τ2. © 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
 
Дата 2024-04-22T15:53:04Z
2024-04-22T15:53:04Z
2022
 
Тип Article
Journal article (info:eu-repo/semantics/article)
Published version (info:eu-repo/semantics/publishedVersion)
 
Идентификатор Akishev, G & Myrzagaliyeva, A 2022, 'ON ESTIMATES OF M-TERM APPROXIMATIONS ON CLASSES OF FUNCTIONS WITH BOUNDED MIXED DERIVATIVE IN THE LORENTZ SPACE', Journal of Mathematical Sciences, Том. 266, № 6, стр. 870-885. https://doi.org/10.1007/s10958-022-06146-7
Akishev, G., & Myrzagaliyeva, A. (2022). ON ESTIMATES OF M-TERM APPROXIMATIONS ON CLASSES OF FUNCTIONS WITH BOUNDED MIXED DERIVATIVE IN THE LORENTZ SPACE. Journal of Mathematical Sciences, 266(6), 870-885. https://doi.org/10.1007/s10958-022-06146-7
1072-3374
Final
All Open Access; Bronze Open Access
https://link.springer.com/content/pdf/10.1007/s10958-022-06146-7.pdf
https://link.springer.com/content/pdf/10.1007/s10958-022-06146-7.pdf
http://elar.urfu.ru/handle/10995/132391
10.1007/s10958-022-06146-7
85150057938
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель Springer
 
Источник Journal of Mathematical Sciences
Journal of Mathematical Sciences (United States)