Просмотреть запись

Computational prediction of new magnetic materials

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Computational prediction of new magnetic materials
 
Автор Rahmanian, Koshkaki, S.
Allahyari, Z.
Oganov, A. R.
Solozhenko, V. L.
Polovov, I. B.
Belozerov, A. S.
Katanin, A. A.
Anisimov, V. I.
Tikhonov, E. V.
Qian, G. -R.
Maksimtsev, K. V.
Mukhamadeev, A. S.
Chukin, A. V.
Korolev, A. V.
Mushnikov, N. V.
Li, H.
 
Тематика CHROMIUM COMPOUNDS
CRYSTAL STRUCTURE
FORECASTING
MAGNETIC MATERIALS
MAGNETISM
MAGNETS
METALS
COMPUTATIONAL PREDICTIONS
CRYSTALS STRUCTURES
HALF METALS
HARD MAGNETIC MATERIAL
HARD MAGNETS
MATERIAL SCIENCE
METALLICS
METALS MATERIALS
SIMULTANEOUS OPTIMIZATION
SPIN CHANNELS
EVOLUTIONARY ALGORITHMS
 
Описание The discovery of new magnetic materials is a big challenge in the field of modern materials science. We report the development of a new extension of the evolutionary algorithm USPEX, enabling the search for half-metals (materials that are metallic only in one spin channel) and hard magnetic materials. First, we enabled the simultaneous optimization of stoichiometries, crystal structures, and magnetic structures of stable phases. Second, we developed a new fitness function for half-metallic materials that can be used for predicting half-metals through an evolutionary algorithm. We used this extended technique to predict new, potentially hard magnets and rediscover known half-metals. In total, we report five promising hard magnets with high energy product (|BH|MAX), anisotropy field (Ha), and magnetic hardness (κ) and a few half-metal phases in the Cr-O system. A comparison of our predictions with experimental results, including the synthesis of a newly predicted antiferromagnetic material (WMnB2), shows the robustness of our technique. © 2022 Author(s).
Russian Science Foundation, RSF, (19-72-30043)
The theoretical study of ferromagnets and DFT + DMFT calculations were supported by the Russian Science Foundation (Grant No. 19-72-30043). We thank Dr. V. A. Mukhanov for assistance in high-pressure experiments and I. V. Blinov, P. Y. Plechov, and A. N. Vasilyev for their help in the initial stages of this project.
 
Дата 2024-04-22T15:53:45Z
2024-04-22T15:53:45Z
2022
 
Тип Article
Journal article (info:eu-repo/semantics/article)
info:eu-repo/semantics/submittedVersion
 
Идентификатор Rahmanian Koshkaki, S, Allahyari, Z, Oganov, AR, Solozhenko, VL, Polovov, IB, Belozerov, AS, Katanin, AA, Anisimov, VI, Tikhonov, EV, Qian, GR, Maksimtsev, KV, Mukhamadeev, AS, Chukin, AV, Korolev, AV, Mushnikov, NV & Li, H 2022, 'Computational prediction of new magnetic materials', Journal of Chemical Physics, Том. 157, № 12, 124704. https://doi.org/10.1063/5.0113745
Rahmanian Koshkaki, S., Allahyari, Z., Oganov, A. R., Solozhenko, V. L., Polovov, I. B., Belozerov, A. S., Katanin, A. A., Anisimov, V. I., Tikhonov, E. V., Qian, G. R., Maksimtsev, K. V., Mukhamadeev, A. S., Chukin, A. V., Korolev, A. V., Mushnikov, N. V., & Li, H. (2022). Computational prediction of new magnetic materials. Journal of Chemical Physics, 157(12), [124704]. https://doi.org/10.1063/5.0113745
0021-9606
Final
All Open Access; Green Open Access
https://hal.science/hal-03791608/document
https://hal.science/hal-03791608/document
http://elar.urfu.ru/handle/10995/132490
10.1063/5.0113745
85139104595
862365200002
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by
 
Формат application/pdf
 
Издатель American Institute of Physics Inc.
 
Источник The Journal of Chemical Physics
Journal of Chemical Physics