Dzyaloshinskii-moriya coupling in 3d insulators
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Dzyaloshinskii-moriya coupling in 3d insulators
|
|
Автор |
Moskvin, A.
|
|
Тематика |
CUPRATES
DZYALOSHINSKII-MORIYA COUPLING ORTHOFERRITES WEAK FERRIMAGNETISM WEAK FERROMAGNETISM |
|
Описание |
We present an overview of the microscopic theory of the Dzyaloshinskii-Moriya (DM) coupling in strongly correlated 3d compounds. Most attention in the paper centers around the derivation of the Dzyaloshinskii vector, its value, orientation, and sense (sign) under different types of the (super)exchange interaction and crystal field. We consider both the Moriya mechanism of the antisymmetric interaction and novel contributions, in particular, that of spin-orbital coupling on the intermediate ligand ions. We have predicted a novel magnetic phenomenon, weak ferrimagnetism in mixed weak ferromagnets with competing signs of Dzyaloshinskii vectors. We revisit a problem of the DM coupling for a single bond in cuprates specifying the local spin-orbital contributions to the Dzyaloshinskii vector focusing on the oxygen term. We predict a novel puzzling effect of the on-site staggered spin polarization to be a result of the on-site spin-orbital coupling and the cation-ligand spin density transfer. The intermediate ligand nuclear magnetic resonance (NMR) measurements are shown to be an effective tool to inspect the effects of the DM coupling in an external magnetic field. We predict the effect of a strong oxygen-weak antiferromagnetism in edge-shared CuO2 chains due to uncompensated oxygen Dzyaloshinskii vectors. We revisit the effects of symmetric spin anisotropy directly induced by the DM coupling. A critical analysis will be given of different approaches to exchange-relativistic coupling based on the cluster and the DFT (density functional theory) based calculations. Theoretical results are applied to different classes of 3d compounds from conventional weak ferromagnets (a-Fe2O3, FeBO3, FeF3, RFeO3, RCrO3, …) to unconventional systems such as weak ferrimagnets (e.g., RFe1-xCrxO3), helimagnets (e.g., CsCuCl3), and parent cuprates (La2CuO4, …). © 2019 by the author. Licensee MDPI, Basel, Switzerland.
|
|
Дата |
2024-04-23T11:10:50Z
2024-04-23T11:10:50Z 2019 |
|
Тип |
Review
Review (info:eu-repo/semantics/review) Published version (info:eu-repo/semantics/publishedVersion) |
|
Идентификатор |
Moskvin, A. (2019). Dzyaloshinskii–Moriya coupling in 3d insulators. Condensed Matter, 4(4), 84. doi:10.3390/condmat4040084
2410-3896 Final All Open Access, Gold, Green https://www.mdpi.com/2410-3896/4/4/84/pdf http://elar.urfu.ru/handle/10995/132541 10.3390/condmat4040084 85091012793 000505566500003 |
|
Язык |
en
|
|
Права |
Open access (info:eu-repo/semantics/openAccess)
cc-by |
|
Формат |
application/pdf
|
|
Издатель |
Multidisciplinary Digital Publishing Institute (MDPI)
|
|
Источник |
Condensed Matter
Condensed Matter |
|