Просмотреть запись

Symmetry adapted finite-cluster solver for quantum Heisenberg model in two dimensions: a real-space

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Symmetry adapted finite-cluster solver for quantum Heisenberg model in two dimensions: a real-space
 
Автор Sinitsyn, V. E.
Bostrem, I. G.
Ovchinnikov, A. S.
 
Описание We present a quantum cluster solver for the spin-S Heisenberg model on a twodimensional lattice. The formalism is based on the real-space renormalization procedure and uses the lattice point group-theoretical analysis and non-Abelian SU(2) spin symmetry technique. The exact diagonalization procedure is used twice at each renormalization group step. The method is applied to the spinhalf antiferromagnet on a square lattice, and a calculation of local observables is demonstrated. A symmetry-based truncation procedure is suggested and verified numerically © 2010 IOP Publishing Ltd.
 
Дата 2024-04-24T12:38:23Z
2024-04-24T12:38:23Z
2007
 
Тип Article
Journal article (info:eu-repo/semantics/article)
info:eu-repo/semantics/submittedVersion
 
Идентификатор Sinitsyn, V. E., Bostrem, I. G., & Ovchinnikov, A. S. (2007). Symmetry adapted finite-cluster solver for quantum Heisenberg model in two dimensions: a real-space renormalization approach. Journal of Physics. A, Mathematical and Theoretical, 40(4), 645–668. doi:10.1088/1751-8113/40/4/006
1751-8113
Final
All Open Access, Green
https://arxiv.org/pdf/cond-mat/0612350
http://elar.urfu.ru/handle/10995/132575
10.1088/1751-8113/40/4/006
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель IOP Publishing
 
Источник Journal of Physics A: Mathematical and Theoretical
Journal of Physics A: Mathematical and Theoretical