Просмотреть запись

On pansiot words avoiding 3-repetitions

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие On pansiot words avoiding 3-repetitions
 
Автор Gorbunova, I. A.
Shur, A. M.
 
Тематика COMPUTATIONAL METHODS
COMPUTER SCIENCE
FINITE ALPHABET
CONTEXT FREE LANGUAGES
 
Описание The recently confirmed Dejean?fs conjecture about the threshold between avoidable and unavoidable powers of words gave rise to interesting and challenging problems on the structure and growth of threshold words. Over any finite alphabet with k ≥ 5 letters, Pansiot words avoiding 3-repetitions forma regular language, which is a rather small superset of the set of all thresholdwords. Using cylindric and 2-dimensionalwords, we prove that, as k approaches infinity, the growth rates of complexity for these regular languages tend to the growth rate of complexity of some ternary 2-dimensional language. The numerical estimate of this growth rate is ≈ 1.2421. © 2011 I. A. Gorbunova, A. M. Shur.
 
Дата 2024-04-24T12:38:23Z
2024-04-24T12:38:23Z
2011
 
Тип Article
Journal article (info:eu-repo/semantics/article)
Published version (info:eu-repo/semantics/publishedVersion)
 
Идентификатор Gorbunova, I. A., & Shur, A. M. (2011). On pansiot words avoiding 3-repetitions. Electronic Proceedings in Theoretical Computer Science, 63, 138–146. doi:10.4204/eptcs.63.19
2075-2180
Final
All Open Access, Gold, Green
https://arxiv.org/pdf/1108.3630
http://elar.urfu.ru/handle/10995/132577
10.4204/EPTCS.63.19
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
cc-by-nc-nd
 
Формат application/pdf
 
Издатель Open Publishing Association
 
Источник Electronic Proceedings in Theoretical Computer Science
Electronic Proceedings in Theoretical Computer Science, EPTCS