Просмотреть запись

On non-complete sets and restivo's conjecture

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие On non-complete sets and restivo's conjecture
 
Автор Gusev, V. V.
Pribavkina, E. V.
 
Тематика FINITE SET
INFINITE SERIES
COMPLETE SETS
FINITE SET
INFINITE SERIES
COMPUTER SCIENCE
COMPUTERS
ARTIFICIAL INTELLIGENCE
 
Описание A finite set S of words over the alphabet ∑ is called non-complete if Fact(S*) ≠ ∑*. A word w ∈ ∑* \ Fact(S*) is said to be uncompletable. We present a series of non-complete sets S k whose minimal uncompletable words have length 5k 2-17k+13, where k ≥ 4 is the maximal length of words in S k . This is an infinite series of counterexamples to Restivo's conjecture, which states that any non-complete set possesses an uncompletable word of length at most 2k 2. © 2011 Springer-Verlag.
2.1.1/13995; Russian Foundation for Basic Research, RFBR: 10-01-00524
★The authors acknowledge support from the Russian Foundation for Basic Re-search, grant 10-01-00524, and from the Federal Education Agency of Russia, grant 2.1.1/13995.
 
Дата 2024-04-24T12:38:26Z
2024-04-24T12:38:26Z
2011
 
Тип book-chapter
Other (info:eu-repo/semantics/other)
info:eu-repo/submittedVersion
 
Идентификатор Gusev, V. V., & Pribavkina, E. V. (2011). On Non-complete Sets and Restivo’s Conjecture. In Lecture Notes in Computer Science. Developments in Language Theory (pp. 239–250). doi:10.1007/978-3-642-22321-1_21
978-3-64222320-4
0302-9743
Final
All Open Access, Green
https://arxiv.org/pdf/1104.0388.pdf
http://elar.urfu.ru/handle/10995/132595
10.1007/978-3-642-22321-1_21
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель Springer Berlin Heidelberg
 
Источник Lecture Notes in Computer Science
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)