Просмотреть запись

Monte Carlo methods for backward equations in nonlinear filtering

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Monte Carlo methods for backward equations in nonlinear filtering
 
Автор Milstein, G. N.
Tretyakov, M. V.
 
Тематика KALLIANPUR-STRIEBEL FORMULA
MEAN-SQUARE AND WEAK NUMERICAL METHODS
MONTE CARLO TECHNIQUE
PATHWISE FILTERING EQUATION
STOCHASTIC PARTIAL DIFFERENTIAL QUATION
KALLIANPUR-STRIEBEL FORMULA
MEAN-SQUARE AND WEAK NUMERICAL METHODS
MONTE CARLO TECHNIQUE
PATHWISE FILTERING EQUATION
STOCHASTIC PARTIAL DIFFERENTIAL QUATION
CONVERGENCE OF NUMERICAL METHODS
NONLINEAR EQUATIONS
NONLINEAR FILTERING
NUMBER THEORY
PARTIAL DIFFERENTIAL EQUATIONS
RANDOM PROCESSES
STOCHASTIC PROGRAMMING
MONTE CARLO METHODS
 
Описание We consider Monte Carlo methods for the classical nonlinear filtering problem. The first method is based on a backward pathwise filtering equation and the second method is related to a backward linear stochastic partial differential equation. We study convergence of the proposed numerical algorithms.The considered methods have such advantages as a capability in principle to solve filtering problems of large dimensionality, reliable error control, and recurrency. Their efficiency is achieved due to the numerical procedures which use effective numerical schemes and variance reduction techniques. The results obtained are supported by numerical experiments. © Applied Probability Trust 2009.
Engineering and Physical Sciences Research Council, EPSRC: EP/D049792/1
 
Дата 2024-04-24T12:38:27Z
2024-04-24T12:38:27Z
2009
 
Тип Article
Journal article (info:eu-repo/semantics/article)
Published version (info:eu-repo/semantics/publishedVersion)
 
Идентификатор Milstein, G. N., & Tretyakov, M. V. (2009a). Monte Carlo methods for backward equations in nonlinear filtering. Advances in Applied Probability, 41(1), 63–100. doi:10.1239/aap/1240319577
0001-8678
Final
All Open Access, Bronze, Green
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/7632DC7A79D939567D9BE6DCBF9018F9/S0001867800003141a.pdf/div-class-title-monte-carlo-methods-for-backward-equations-in-nonlinear-filtering-div.pdf
http://elar.urfu.ru/handle/10995/132612
10.1239/aap/1240319577
 
Язык en
 
Права Open access (info:eu-repo/semantics/openAccess)
 
Формат application/pdf
 
Издатель Cambridge University Press (CUP)
 
Источник Advances in Applied Probability
Advances in Applied Probability