Performance Comparison of Si and GaAs Solar Cell due to Deposition of ZnO and SiO2 Antireflection Coating Layer
Электронный научный архив УРФУ
Информация об архиве | Просмотр оригиналаПоле | Значение | |
Заглавие |
Performance Comparison of Si and GaAs Solar Cell due to Deposition of ZnO and SiO2 Antireflection Coating Layer
|
|
Автор |
Jhilirani Nayak
Priyabrata Pattanaik Dilip Kumar Mishra |
|
Тематика |
ANTI-REFLECTION COLLATING LAYER
CURRENT MISMATCH EFFICIENCY REFLECTIVITY BAND GAP AND FILL FACTOR COMSOL 5.6 SIMULATION ZINC OXIDE SILICON DIOXIDE PHOTOVOLTAIC CELLS |
|
Описание |
Received: 15 November 2023. Revised: 20 December 2023. Accepted: 15 January 2024. Available online: 31 March 2024.
This article provides a new approach to the comparison of the performance of low-cost, efficient, and stable silicon and gallium arsenide solar cells. The design convention becomes challenging due to the absorption and current mismatching of the used antireflection coating layer with device sub-layers. The electrical properties of the proposed devices were analyzed in the presence of zinc oxide and silicon dioxide antireflection coating (ARC) layer, by adopting COMSOL 5.6 simulation software. These monolithically designed single junction solar cells of distinct materials with various band gaps and diverse spectral characteristics furnish the best efficiency with impressive degradation in reflection losses. The wideband antireflection layers are used to reduce reflection losses by reducing the refractive index towards the top surface of the photovoltaic cells. Simulation results provide the optimized values of the parameters of the devices within the range of 200-1200nm wavelength. At a thickness of 0.5μm zinc oxide, silicon solar cell and gallium arsenide solar cell provides efficiency of 16.85% and 10.69% respectively. Deposition of silicon dioxide on zinc oxide enhances the power efficiency to 16.89% and 10.7% respectively. A set of figures including maximum voltage, maximum current, conversion efficiency, short circuit current, and fill factor are presented. This article represents the use of zinc oxide and silicon dioxide antireflection layers with their optimum thickness can provide a better improvement in the device's performance. |
|
Дата |
2024-05-13T07:46:22Z
2024-05-13T07:46:22Z 2024 |
|
Тип |
Article
|
|
Идентификатор |
Performance Comparison of Si and GaAs Solar Cell due to Deposition of ZnO and SiO2 Antireflection Coating Layer / Jhilirani Nayak, Priyabrata Pattanaik, Dilip Kumar Mishra // International Journal of Energy Production and Management. — 2024. — Vol. 9. Iss. 1. — P. 1-7.
2056-3280 2056-3272 http://elar.urfu.ru/handle/10995/133534 https://www.elibrary.ru/item.asp?id=67216771 10.18280/ijepm.090101 |
|
Язык |
en
|
|
Связанные ресурсы |
International Journal of Energy Production and Management. 2024. Vol. 9. Iss. 1
|
|
Издатель |
International Information and Engineering Technology Association (IIETA)
Ural Federal University Уральский федеральный университет |
|