Просмотреть запись

Классификация длинных текстов

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Классификация длинных текстов
LONG TEXT CLASSIFICATION
 
Автор Маяцкая, Е. А.
Mayatskaya, E. A.
 
Тематика CLASSIFICATION
EMBEDDINGS
BERT
RECURRENT NEURAL NETWORKS
КЛАССИФИКАЦИЯ
ВЕКТОРНОЕ ПРЕДСТАВЛЕНИЕ ТЕКСТА
BERT
РЕКУРРЕНТНЫЕ НЕЙРОННЫЕ СЕТИ
 
Описание При обработке длинных последовательностей трансформеры сталкиваются с ограничением на объем входных данных. В данной работе разработан метод, позволяющий обрабатывать длинные тексты. Метод основан на сегментации входного текста на несколько фрагментов и последующей подачи их в базовую модель. Для эффективной обработки корпуса текстов разработан подход ускоряющий процесс создания векторного представления текста. Проведен анализ производительности алгоритма, который показал, что разработанный метод достиг конкурентоспособных результатов на четырех наборах данных.
When processing long sequences, transformers face a limitation on the amount of input data. In this work, a method has been developed that allows processing long texts. The method is based on segmenting the input text into several fragments and then feeding them into the base model. For efficient processing of a text corpus, an approach has been developed that speeds up the process of creating a vector representation of text. An analysis of the algorithm's performance was carried out, which showed that the developed method achieved competitive results on four data sets.
Cet article examine la structure de l'éducation en France, les niveaux d'énseignement ainsi que le système d'évaluation. Il a été établi que l'évaluation, en tant que moyen d'améliorer la qualité de la formation scolaire, a une valeur de référence optimale. À cet égard, nous avons fait une comparaison des évaluations finales et intermédiaires menées pour les étudiants en France et en Russie. Nous avons examiné également la transition du système d'évaluation de 20 points établi de l'éducation française.
 
Дата 2024-05-16T07:56:48Z
2024-05-16T07:56:48Z
2024
 
Тип Conference Paper
Conference object (info:eu-repo/semantics/conferenceObject)
Published version (info:eu-repo/semantics/publishedVersion)
 
Идентификатор Маяцкая Е. А. Классификация длинных текстов / Е. А. Маяцкая. — Текст : электронный // ИНТЕР – Информационные технологии и радиоэлектроника : сборник тезисов студенческой конференции (Екатеринбург, 13-14 мая 2024 г.). — Екатеринбург : Издательский Дом «Ажур», 2024. — C. 83-87.
978-5-91256-646-2
http://elar.urfu.ru/handle/10995/133794
 
Язык ru
 
Связанные ресурсы ИНТЕР – Информационные технологии и радиоэлектроника (2024)
 
Формат application/pdf
 
Издатель Издательский Дом «Ажур»