Просмотреть запись

Exploring the Role of Explainable Artificial Intelligence in Decision-Making Processes for Analysational Systems

Электронный научный архив УРФУ

Информация об архиве | Просмотр оригинала
 
 
Поле Значение
 
Заглавие Exploring the Role of Explainable Artificial Intelligence in Decision-Making Processes for Analysational Systems
 
Автор Balungu, D. M.
Wahab, Badr, Y. E. K. A.
Kumar, A.
 
Тематика EXPLAINABLE AI
DECISION-MAKING
ORGANISATIONAL SYSTEMS
ARTIFICIAL INTELLIGENCE
 
Описание As artificial intelligence (AI) algorithms become increasingly advanced and embedded within organisational systems, there is a growing need for transparency and understanding of their decision-making processes. Explainable AI (XAI) has emerged as a field of research aimed at developing AI systems that can clarify and justify their outputs. This paper aims to explore the role of explainable AI in decision-making processes for organisational systems. We review the current state of AI in organisations, discuss the importance of explainability, and explore various XAI techniques and their potential benefits. By addressing the challenges and limitations associated with explainable AI, this paper provides insights into the considerations required when implementing XAI in organisational decision-making.
 
Дата 2024-06-05T08:12:08Z
2024-06-05T08:12:08Z
2024
 
Тип Conference Paper
Conference object (info:eu-repo/semantics/conferenceObject)
Published version (info:eu-repo/semantics/publishedVersion)
 
Идентификатор Balungu D. M. Exploring the Role of Explainable Artificial Intelligence in Decision-Making Processes for Analysational Systems / D. M. Balungu, Y. E. K. A. Wahab Badr, A. Kumar. — Текст : электронный // Innovative Approaches in Computer Science within Higher Education — InnoCSE 2023 = Инновационные подходы в высшем образовании в сфере компьютерных наук : материалы IV международной научно-практической конференции, (Екатеринбург, 4–5 декабря 2023 г.). — Екатеринбург : Издательство Уральского университета, 2024. — С. 55-60. — ISBN 978-5-7996-3845-0 // Электронный научный архив УрФУ. — URL: https://elar.urfu.ru/handle/10995/135773.
978-5-7996-3845-0
http://elar.urfu.ru/handle/10995/135773
 
Язык en
 
Связанные ресурсы Innovative Approaches in Computer Science within Higher Education — InnoCSE-2023. — Екатеринбург, 2024
 
Формат application/pdf
 
Издатель УрФУ